StephanHartmann†,GabriellaPigozzi‡,JanSprenger§
Abstract
Theaggregationofconsistentindividualjudgmentsonlogicallyinter-connectedpropositionsintoacollectivejudgmentonthesameproposi-tionshasrecentlydrawnmuchattention.Seeminglyreasonableaggrega-tionprocedures,suchaspropositionwisemajorityvoting,cannotensureanequallyconsistentcollectiveconclusion.Theliteratureonjudgmentaggregationreferstosuchaproblemasthediscursivedilemma.Inthispaperweassumethatthedecisionwhichthegroupistryingtoreachisfactuallyrightorwrong.Hence,thequestionweaddressinthispaperishowgoodthevariousapproachesareatselectingtherightconclusion.Wefocusontwoapproaches:distance-basedproceduresandBayesiananaly-sis.Undertheformerwealsosubsumetheconclusion-andpremise-basedproceduresdiscussedintheliterature.WhereaswebelievetheBayesiananalysistobetheoreticallyoptimal,thedistance-basedapproacheshavemoreparsimoniouspresuppositionsandarethereforeeasiertoapply.
1Introduction
Membersofagroupoftenhavetoexpresstheiropinionsonseveralproposi-tions.Examplesareexpertpanels,legalcourts,boards,andcouncils.Oncethemembershavestatedtheirviewsontheissuesintheagenda,theindividualjudgmentsneedtobecombinedtoformacollectivedecision.Theaggregationofindividualconsistentjudgmentsonlogicallyinterconnectedpropositionsintoanequallyconsistentgroupjudgmentonthesamepropositionshasrecentlydrawnmuchattention.Thedifficultyliesinthefactthatthereisnogeneralagreementuponwhichproceduretouse.
Inthispaperweevaluateandcomparethemethodsproposedsofarinthelit-eraturewithaBayesianapproachtojudgmentaggregation.Theassessmentcriterionweemployisreliability.Weassumethattheresultingcollectivejudg-mentisfactuallyrightorwrong,andwecomparetheproceduresintermsofhowreliabletheyareatselectingtherightsocialdecision.Inparticular,wepresentresultsconcerningthereliabilityofseveralmethodstoaggregatecon-flictingindividualjudgmentsintoaconsistentgroupconclusion.Thefirstgroupofmethodsaredistance-basedprocedures,amongthemthemajorityfusionop-erator[11].Fusionoriginatesfromcomputerscience,wheretheproblemofcombininginformationfromequallyreliablesourcesarisesinseveralcontexts[5].ThesecondmethodisafullBayesiananalysisoftheunderlyingdecisionproblem.
Thecombinationoffinitesetsoflogicallyinterconnectedpropositionshasbeenrecentlyinvestigatedintheemergingfieldofjudgmentaggregation[9].Ajudg-information:StephanHartmann,TilburgCenterforLogicandPhilosophyof
Science,TilburgUniversity,NL-5037ABTilburg,S.Hartmann@uvt.nl
‡Contactinformation:GabriellaPigozzi,ComputerScienceandCommunicationsDepart-ment,UniversityofLuxembourg,L-1358Luxembourg
§Contactinformation:JanSprenger,TilburgCenterforLogicandPhilosophyofScience,TilburgUniversity,NL-5037ABTilburg,J.Sprenger@uvt.nl.
†Contact
1
Judges1,2,3Judges4,5Judges6,7MajorityAYesYesNoYesBYesNoYesYesCYesNoNoNoTable1:Anillustrationofthediscursivedilemma
mentisanassignmentofyes/notoaproposition.Theproblemisthataseem-inglyreasonableaggregationprocedure,suchaspropositionwisemajorityvoting,cannotensureaconsistentcollectiveconclusion.
Hereisanillustration.Acourthastomakeadecisiononwhetherapersonisliableofbreachingacontract(representedbyapropositionC,alsoreferredtoastheconclusion).Thejudgeshavetoreachaverdictfollowingthelegaldoctrine.ThisstatesthatapersonisliableifandonlyifshedidanactionX(representedbypropositionA,alsoreferredtoasthefirstpremise)andhadcontractualobligationnottodoX(representedbypropositionB,alsoreferredtoasthesecondpremise).Thelegaldoctrinecanbeformallyexpressedastheformula(A∧B)↔C.EachmemberofthecourtexpressesherjudgmentonA,BandCsuchthattherule(A∧B)↔Cissatisfied.SupposenowthatthecourthassevenmembersmakingtheirjudgmentsaccordingtoTable1.Weseethat,althougheachjudgeexpressesaconsistentopinion,propositionwisemajorityvoting(consistingintheseparateaggregationofthevotesforeachofthepropositionsA,BandCviathemajorityrule)resultsinamajorityforAandamajorityforB,butinamajorityfor¬C.Thisisclearlyaninconsistentcollectiveresultasitviolatestherule(A∧B)↔C.Theparadox(calledthediscursivedilemma)restswiththefactthatmajorityvotingcanleadagroupofrationalindividualstoendorseanirrationalcollectivejudgment.Clearly,therelevanceofsuchaggregationproblemsgoesbeyondthespecificcourtexampleanditappliestoallsituationsinwhichindividualbinaryevaluationsneedtobecombinedintoagroupdecision.
Twoescape-routestothediscursivedilemmahavebeensuggested:thepremise-basedprocedure(PBP)andtheconclusion-basedprocedure(CBP).AccordingtoPBP,eachjudgevotesoneachpremise.Theconclusionistheninferredfromtherule(A∧B)↔CandfromthejudgmentofthemajorityofthegrouponAandB.IncasethejudgesoftheexamplefollowedthePBP,thedefendantwouldbedeclaredliableofbreachingthecontract.Ontheotherhand,accordingtotheCBP,thejudgesdecideprivatelyonAandBandonlyexpresstheiropinionsonCpublicly.ThejudgementofthegroupistheninferredfromapplyingthemajorityruletotheindividualjudgmentsonC.Intheexample,contrarytothePBP,theapplicationoftheCBPwouldfreethedefendant.Moreover,noreasonsforthecourtdecisioncouldbesupplied.
Inthispaper,westudyfurtherpropertiesoftheinformationfusionprocedurewhichtakesamiddlepositionbetweenPBPandCBP.Aboveall,weaddressthequestionhowgoodanaggregationprocedureisatselectingtherightconclusion.1ThebehaviorofthefusionprocedurewillbecontrastedwiththePBPandtheCBPthatwerestudiedbyBovensandRabinowicz[2]andbyList[7,8].Fur-thermore,weapplyBayesianconditionalizationtothegroupdecisionproblem.
[4]foraninvestigationofaggregationproceduresintermsofreliabilityinselecting
therightsituation,i.e.premisesandconclusion.
1See
2
ItisshownthattheBayesianapproachenjoystheoreticaloptimalityandhighflexibility.Inparticular,wecancombineitwithanysetofpriordistributionsandutilitymatrices.Ontheotherhand,itrequiresacostlycomputationofaposteriordistributionwhereboththepriordistributionandthecompetenceofthevotershavetobemadeexplicit.Theserequirementsmaybehardtomeetinmanypracticalapplications.Finally,wecomparethedistance-basedprocedurestotheBayesiananalysis.
Thepaperisstructuredasfollows:InSection2,wedescribethefusionprocedureandshowthatitisanelementofacontinuumofdistance-basedprocedureswhichalsocontainsPBPandCBP.Section3comparesthesethreeapproachesintermsoftheirreliabilitiesatselectingtherightconclusion.AfullBayesiananalysisofagroupdecisionproblemisprovidedinSection4.Section5concludesandsketchesfurtheropenquestions.Finally,theappendixcontainstheproofsandthecalculationdetails.
2
2.1
Distance-basedprocedures
Introduction
Asshownin[11],theapplicationofafusionoperatortojudgmentaggregationproblemsallowstodefineconsistentgroupdecisionsandtoavoidparadoxicaloutcomeswithouthavingtochoosebetweentwopossiblyconflictingprocedureslikethePBPandCBP.Thissubsectionsummarizestheapproachandtheresultsof[11].Thereaderisreferredtothatpaperformoredetails.
Oneofthekeypointsintheliteratureoninformationfusionisthattheaggrega-tionoffinitesetsofpropositionssatisfyingsomeconstraintsdoesnotguaranteeacollectivejudgmentsatisfyingthesameconstraints.Onewaytoovercomethisproblemistorestrictthespaceofthepossiblesolutionstothesetoftheadmissiblesituationsonly,i.e.tothosesetsofpremisesandconclusionthatsatisfytheconstraints.Then,thefusionoperatorselectsoneoftheseconsis-tentsituations,namelythe(possiblynotunique)elementthatminimizesthedistancetotheactualindividualinputs.
Toillustratehowthemajorityfusionoperatorworks,weapplyittothecourtexample.WehavetoformajudgmentonthesetofpropositionsX={A,B,C}withtheconstraint(A∧B)↔C.Hence,thereareonlyfourconsistentsitua-tions:
S1={A,B,C}=(1,1,1)S2={A,¬B,¬C}=(1,0,0)S3={¬A,B,¬C}=(0,1,0)S4={¬A,¬B,¬C}=(0,0,0)
Inthisterminology,Aisidentifiedwitha1and¬Awitha0.InagroupofNpersons,therearen1personsendorsingthesituationS1(i.e.theyjudgeA,BandCtobetrue),n2personsendorsingS2,andsoon.Hence,n1+n2+n3+n4=N.Onpainofindividualirrationality,everymemberofthegrouphastoendorseexactlyoneofthesesituations.Inprinciple,theequationsin(1)involveanabuseofnotationbecausethesituationsrefertostatesoftheworldaswellastoelementsinavectorspacethatbeardistancerelationstothesubmitted
(1)
3
Judges1,2,3Judges4,5Judges6,7AverageHammingdistanceHammingdistanceHammingdistanceHammingdistancetotototoS1S2S3S4(componentwise)(componentwise)(componentwise)(componentwise)A1105/72/72/75/75/7B1015/72/75/72/75/7C1003/74/73/73/73/7TotalS1S2S3—8/710/710/713/7Table2:Thedistance-basedfusionoperatorintheoriginalexampleoftable1.judgments.Nonetheless,theintendedmeaningof“S1”willalwaysbeevidentfromthecontext.
Toapplythefusionoperator,thefoursituationsmustbeweighedwiththenumberofpersonsthatendorsedthatsituation.Inotherwords,welookat
41S:=niSi
Ni=1
(2)
Fusionoptsforthesituationin{S1,S2,S3,S4}whichhasthelowestdistancetoS.Inotherwords,if“+Si”denotesadecisionforSiastheaggregatedcollectivejudgmentsetand“−Si”adecisionagainstSithen
+Si⇐⇒Si−S≤minSj−Sj=i
Ifwedefinedi:=Si−S,fusionranksthesituationSifirstifandonlyif
di Notethatnothinghingesonthechoiceofaparticularnormasadistancefunc-tionbecauseallnormsinfinite-dimensionalspacesare(ordinally)equivalent.Inparticular,theSiandSareallmembersofR3sothatthefusionprocedureisinvariantunderthechoiceofanorm:onlytheorderingofthedistancesmat-tersforthedecision.Inordertosimplifycalculationswerecommendtousethe1-norm(i.e.tosumtheabsolutevaluesofthethreecomponents)whichcorrespondstotheHammingdistance. Theprinciplebehindthedistanceminimizationistheselectionofasituationthatisclosesttotheaverage.Table2illustratesthat,inthecourtexample,thesituationselectedbythefusionoperatorisS1={1,1,1}.ThisisbecauseS1is—amongthepossiblesituations—theclosesttothecollectiveaverage.Sinced1=2/7+2/7+4/7issmallerthananyotherdistancetoasituation,thefusionoperatorselectsS1.Wealsoseethat,withregardtoadecisiononS1,wecanapplyallthreeprocedures–PBP,CBPandfusion–toconjunctiveaggregationrules(A∧B↔C)aswellastodisjunctiverules(A∨B↔C)becausethelatterarerepresentableas((¬A∧¬B)↔¬C).Thejudgmentaggregationmechanismisabsolutelyisomorphic–accepting¬A∧¬BamountstoacceptingA∨Bandviceversa. 4 2.2Representationresults Thereisalsoanintuitivelyunderstandablerepresentationofthemajorityfusionprocedure(henceforthFP).AssumethatavotersjudgeAtobetrue,bvotersjudgeBtobetrueandcvotersjudgeC↔(A∧B)tobetrue.(Ofcourse,a,b,andccanbecalculatedfromtheniandviceversa.)Thenseveralfactscanbeshown:2 Fact1Thefollowingclaimshold:1.min(a,b)≥c≥a+b−N 2.+S1⇔(a+c>N)∧(b+c>N).3.Ifd1 +S1⇔(a+c>N)∧(b+c>N) (3) Inordertosatisfyequation(3)andtoacceptS1intheaggregatedjudgment,asufficientnumberofpeoplehavetoendorsetheconclusionCindividually.Inparticular,atwo-thirdmajorityoneachofthepremisesissufficienttoguaranteethatfusionselectsthesituationS1. From(3),wecanalsoderivethefollowingfact: Fact2Let+Si(X)denoteadecisionforthesituationSiunderprocedureX.Then •+S1(CBP)→+S1(FP)→+S1(PBP).•−S1(PBP)→−S1(FP)→−S1(CBP). Hence,iftheCBPoptsforS1,sodoesfusion.AndiffusionoptsforS1,sodoesthePBP.However,iftheresultfromtheCBPisnegative,thenfusionismorecautiousthanthepremise-basedprocedure.Torecall,thePBPsuffersfromahighfalsepositiverate,i.e.itoftenendorsesC↔(A∧B)whenitisinfactfalse(cf.[7,8]).Fusionislessvulnerabletothismistake,asfact2shows.Wewillexpandonthispointinthesubsequentsection. Itmightbesuspectedthatforanincreasingnumberofpremises,fusionmoreandmoreresemblesthepremise-basedprocedurebecausethecontributionofthepremisesoutweighsthecontributionfromtheconclusions.Nonethelessthisisonlytrueinthetrivialsensethatallthreeapproachesmakeitincreasinglyhardtoendorsetheconclusionevenwhenitistrue. Fact3Leta1,...,amdenotethenumberofvotesforeachofthempremises.Then, 1.minai≥c≥ 2All m i=1 ai−(m−1)N proofsaregivenintheappendix. 5 2.+S1≡ai+c>N∀i∈{1,...,m} Thisentailsthatforconstantpandlargem,c/N(i.e.thefractionofpeoplevotingforS1)isprobablysmall.ThisissobecausethelargenumberofpremiseswhichhavetobeaffirmedraisesthehurdlesforendorsingS1.Evenifthereisamajorityforeachofthepremises:thegreaterm,thehigherthesamplingvari-anceintheai,sothattheadditionalconditionai+c>Nbecomesincreasinglyhardtosatisfy.Hence,foralargenumberofpremises,FPwillresembleCBPandsetthestandardsforanendorsementofS1substantiallyhigherthanPBP.3AllthissuggeststhatfusionisintimatelyrelatedtoCBPandPBP.Indeed,wecanrepresentthetwolatterproceduresasdistance-basedprocedureswhen t weparametrizethesituationS1bymeansofS1:=(1,1,t)witht∈[0,∞]. t (Foranyt,S1referstothesamerealworldsituationastheoriginalS1–bothpremisesandtheconclusionaretrue.Merelythedistancebetweenthissituationandthesubmittedsetofjudgmentisnowmeasureddifferently,inparticulart S:=(a/N,b/N,tc/N).)Again,thesituationwhichminimizesthedistancetot S,theaverageofthesubmittedjudgmentsets,ischosen.Thiselucidatestheconnectionbetweenfusion,CBPandPBP: t Proposition1LetS1=(1,1,t).Choosingthesituationwiththeminimum tdistancetoSisequivalenttoPBPfort=0,yieldsFPfort=1andconvergestoCBPfort→∞. Inotherwords,fort→0,thedistance-basedoperatorconvergesagainstthePBPwhichisattainedfort=0.4Ontheotherhand,whent→∞,thedistance-basedoperatorconvergesagainsttheCBP.Finally,fort=1,weobtaintheconventionalfusionoperator.5Fromnowon,weintendtheterm“distance-basedprocedure”torefertoallaggregationproceduresthatcorrespondtoaspecificvalueoft,includingt=∞.Thisgivesusacontinuumofdistance-basedapproaches,rangingfromthepremise-basedtotheconclusion-basedoperator,withfusionhavingamiddleposition.Wenowturntoanevaluationoftheprocedures. 3 3.1 Comparingthedistance-basedprocedures Preliminaries Inordertoinvestigatetheepistemicreliabilityofthefusionprocedure,weadoptaprobabilisticframework.Inparticular,weassigntoeveryvoteranindividualcompetencep∈(0,1)tomakeacorrectjudgmentaboutasinglepremise.Thismeansthatwhenapremise(eitherAorB)istrue,thevotergivesacorrectreportwithprobabilityp1=p,andequally,ifthepremiseisfalse,thevotergives doesnotcontradicttheobviousfactthat,forfixedpriorprobabilities,theprobability ofcorrectlydetectingS1approaches0asmgoestoinfinityforallthreeapproaches. 4WecanthinkofthatcaseasaprojectionofStontothehyperplanespannedbytheother 1 threesituations. 5Thevaluet=1isspecialbecauseitistheonlyvaluewheretheyes=1/no=0assignmentschemeintroducedintheprevioussubsectionappliestopremisesandconclusion. 3This 6 acorrectreportwithprobabilityp2=p.6Itwould,ofcourse,alsobepossibletoassigntwodifferentcompetencestothevoter,oneforcorrectlydiscerningAandoneforcorrectlydiscerning¬A.Butthatwouldcouplethecompetenceofthevotertothepriorprobabilitiesofthevarioussituations.Toseethis,notethat p=p1P(A)+p2(1−P(A)) (4) Wewouldoftenliketosaythatthereliabilityofthevotersisindependentofthepriorprobabilitiesoverthefoursituations.Theonlypossiblewaytoensurethisindependenceistoassumethattheprobabilityofafalsepositivereportonapremiseequalstheprobabilityofafalsenegativereport,inotherwords,p1=p2.7Then,theCondorcetJuryTheoremlinksthecompetenceofthevoterstothereliabilityofmajorityvoting:AssumethattheindividualvotesonapropositionAareindependentofeachother,conditionalonthetruthorfalsityofthatproposition.IfthechancethatanindividualvotercorrectlyjudgesthetruthorfalsityofAisgreaterthanfiftypercent(inotherwords,p>0.5),thenmajorityvotingeventuallyyieldstherightcollectivejudgmentonAwithincreasingsizeofthegroup.Therefore,theCondorcetJuryTheoremoffersanepistemicjustificationtomajorityvotingandmotivatestheuseofthePBPandCBPinthejudgmentaggregationproblem([2]). Itshouldbenoted,though,thatanapplicationoftheCondorcetresultstojudgmentaggregationrequiresfurtherassumptionswhichwenowmakeexplicit.Theyarealsorequiredtoavoidcomputationalcomplexityandareformulatedasin[2]: (i)ThepriorprobabilitiesthatAandBaretrueareequal(P(A)=P(B)).(ii)AandBare(logicallyandprobabilistically)independent. (ii)Allvotershavethesame(independent)competencetoassessthetruthof AandB(p).TheirjudgmentsonAandBareindependent.(iv)Eachindividualjudgmentsetislogicallyconsistent.Assumption(iv)entailsthatonlyfoursituationsarepossible: tS1={A,B,C}=(1,1,t)tS3={¬A,B,¬C}=(0,1,0) t S2={A,¬B,¬C}=(1,0,0)tS4={¬A,¬B,¬C}=(0,0,0) Moreover,assumption(i)andindependenceclaim(ii)entailthatwecanparametrize thesetofpriordistributionsbyasingleparameterq:=P(A)=P(B).Fromtheindependenceassumptionswethenobtain ascribeanindividualcompetenceonlyforvotingonpremises,notforvotingonany proposition(suchasA∧B).Indeed,itfollowsthatgivenanindividualvotingcompetenceponAandB,thevotingcompetenceonA∧Bisp2=p([8]).However,inmanycontextsitisreasonabletoassignindividualvotingcompetencetoonlyacertainkindofpropositions.E.g.inalegalcasethiswouldbepropositionsas“PhadcontractualobligationnottodoX”or“PactuallydidX”,butnotonpropositionsas“Pshouldgotojail”. 7Settingp=palsoanswersList’sconcerns([8])thatforaverylowvalueofporp,the1212 votersarebadattrackingthetruesituationalthoughtheoverallreliabilityp,asdefinedin(4),canstillbehigh.Regardlessofwhetherthispointisreallyconvincing,settingp1=p2killstwobirdswithonestone:wecircumventList’sobjectionandwedecoupleoverallreliabilityandpriorprobabilities. 6We 7 ttttP(S1)=q2;P(S2)=P(S3)=q(1−q);P(S4)=(1−q)2 Theprobabilitythatadistance-basedprocedurechoosestherightconclusion canbecalculatedvia P(G) :=P(Adistance-basedprocedureselectstherightconclusion)= tttP(S1)P(+S1|S1) 4i=2 tt where“+S1”denotesacollectivejudgmentthatselectsthesituationS1andthe t P(Si)-termscanbereplacedbythecorrespondingq-terms. + tttP(Si)P(−S1|Si) 3.2Resultsandgeneralizations Withtheaboveequationsinhand,wecannowcomparethefusionprocedure (FP)tothePBPandtheCBP.BovensandRabinowicz([2])showthatthePBPisalwaysbetteratidentifyingthecorrectsituation,whiletheCBPissometimesbetteratselectingtherightconclusion.ThismeanseithertoacceptortorejecttS1asthecorrectsituation,and,incaseofarejection,tobesilentonwhethertttS2,S3orS4istrue.Indeed,inavarietyofrealaggregationproblems,itis t mosturgenttocometoaverdictwithregardtoS1anditislessimportant ttt todiscernbetweenS2,S3andS4(e.g.becausetheyhavethesamepracticalconsequences).However,thatdoesnotmeanthattheaggregationprocedures t neglectthereasonsforeitheracceptingorrejectingS1:Thenumberofvotesforeachpremiseplaysasubstantialpartinalldistance-basedapproachestojudgmentaggregation,withtheobviousexceptionofCBP.Thecomplementaryproblemofsituationselectioniscoveredindetailinasequelpaper([4]). 10.90.80.70.6010.90.80.70.60102030401020304010.90.80.70.601020304010.90.80.70.6010203040Figure1:ReliabilityofPBP(triangles),FP(stars)andCBP(diamonds)asafunctionofN,forvariousvaluesofpandafixedvalueofq=0.3.Upperleftfigure:p=0.56.Upperrightfigure:p=0.64.Lowerleftfigure:p=0.72.Lowerrightfigurep=0.8. Figures1-3depictthereliabilityofPBP,CBPandFPforvariousvaluesofp,qandoddvaluesofN.Firstwewouldliketodiscussfigure1.Itturnsoutthat 8 10.90.80.70.6010.90.80.70.60102030401020304010.90.80.70.6010.90.80.70.601020304010203040Figure2:ReliabilityofPBP(triangles),FP(stars)andCBP(diamonds)asafunctionofN,forvariousvaluesofpandafixedvalueofq=0.5.Upperleftfigure:p=0.56.Upperrightfigure:p=0.64.Lowerleftfigure:p=0.72.Lowerrightfigurep=0.8. 10.90.80.70.6010.90.80.70.60102030401020304010.90.80.70.6010.90.80.70.601020304010203040Figure3:ReliabilityofPBP(triangles),FP(stars)andCBP(diamonds)asafunctionofN,forvariousvaluesofpandafixedvalueofq=0.7.Upperleftfigure:p=0.56.Upperrightfigure:p=0.64.Lowerleftfigure:p=0.72.Lowerrightfigurep=0.8. 9 forrelativelysmallvaluesofp(p=0.56,0.64),thepremise-basedprocedure t toooftenerroneouslyendorsesS1,andespeciallysoforsmallvaluesofN.Inthiscase,amajorityforapremisecanemergebymererandomsamplingeffectsalthoughthepremiseisactuallynotsatisfied.ThereforePBPisinferiortobothFPandCBPinsuchcircumstances.Forhighervaluesofp,however,thethreeproceduresnearlycoincideanddonotdiffermuch.Thisisespeciallysalientforp=0.8.Figure2confirmsthelocalfailureofPBPforamodestp(p=0.56).However,wealsoseethatforintermediatevaluesofp(p=0.64),PBPclearlydominatesthetwootherapproacheswhereasthereisagainnosignificantdifferencebetweenPBPandtherestforhighvaluesofp. t ThesuperiorityofPBPismostpronouncedinFigure3whereq=0.7,i.e.S1isthemostprobablesituation.Foranyvalueofpsmallerthan0.8,PBPclearlyoutperformsthetwootherprocedures.Thatisnotsurprising:thegreaterq,the tt moreimportantisittoavoiderroneousrejectionofS1,justbecauseS1occursmoreoften.Fact2hasestablishedthat,amongthethreescrutinizedprocedures, t PBPismostinclinedtowardsacceptingS1,asalreadynotedby([2],[8]).This t “optimism”towardsS1naturallypaysoffintermsofoverallreliabilitywhen 8 qisquitelarge.Ontheotherhand,weseethatCBPfailstobenefitfromthegreaterstabilityinthedatawhichaccompaniestheincreasingnumberofvoters.Especially,weseethatCBPperformsquitepoorlyforlargevaluesofNincomparisontotheotherprocedures.Besidesweseeagainthatallthreeproceduresarealmostequallyreliableforp=0.8becausethehighindividualreliabilityguaranteesthatanyprocedureiswellprotectedagainsterror. TheconcreteobservationsforlargeNintheaboveexamplescanbegeneral-ized.Weperformanasymptoticanalysisofthedistance-basedproceduresinageneralframework,buildingontheparametrizationalreadyusedinproposition t 1.ConsiderfirstthecasethatS1istrue. tProposition2AssumethatS1=(1,1,t)isthetruesituation.ThenP-almostsurely(P-a.s.)forN→∞: √ 2t2+2t+1−1ttt +S1⇐⇒d1 j=12t √ Inparticular,thistranslatesasp>0.5forPBP,p>(5−1)/2forFPand√ p>1/2forCBP. Thefollowingcorollaryassertsthatp>ptisbothnecessaryandsufficientinordertoensuretheP-a.s.correctconclusionselectionforincreasinggroupsize:Corollary1Forthegroupsizegoingtoinfinity(N→∞),thedistance-basedproceduresselecttherightconclusionP-a.s.ifandonlyifp>pt. Putanotherway,P(G)→1ifandonlyifpislargerthanthespecifiedthreshold.Hence,PBPhasbetterasymptoticpropertiesthanfusionbecauseforalargenumberofvoters,iteventuallybecomesperfectlyreliableforp>0.5√whereasfusion√requiresthestrongerp>(5−1)/2.CBPrequirestheevenhigherp>1/2.ThissuperiorityofPBPforlargevotinggroupsisexemplifiedinallthreefigures.Moreover,theasymptoticresultsexplainwhyCBPisnot evenconjecturethatthereisathresholdforq(dependentonp)sothatforanyN, PBPismorereliablethananyotherdistance-basedprocedure(t∈(0,∞)).Wewouldliketoprovesucharesultinfuturework. 8We N→∞ 10 monotonouslyincreasingasafunctionofNforp=0.56orp=0.64.ThesameholdsforFPwithregardtop=0.56.However,thefiguresalsoteachusthatforlargevaluesofp,theasymptoticresultscarrylittleimportancefortheactualreliabilitybecauseallthreeprocedurestendtoagreequickly.Furthermore,theasymptoticpropertiesarenotalwayscorrelatedwiththeperformanceinsmallvotinggroups:Forsmalltomoderatevaluesofp,qandN,FPandCBPoutperformPBP–seetheuppergraphsinfigure1and2.Asalreadymentioned,webelievethatthisisduetorandomsamplingeffectswhichoccurinsmallvotinggroups. Wecansummarizetheresultsasfollows:Forhighvaluesofp(approximatelyp>0.75),allthreeexaminedproceduresareveryreasonable.Choosinganaggregationmethodamongtheinfinityofdistance-basedproceduresdoesnotmakemuchofadifference.Onlyformoderatevaluesofp(p∈[0.5,0.75]),thereisarealdifferencebetweentheaggregationprocedures.Itturnsoutthatthe t priorprobabilityofS1,q2,playsacrucialrolehere.Roughly,wecansaythatthehigherqandthehigherN,themoreshouldwebeinclinedtowardsPBP,whereasforsmallgroupsandmodestq,FPorevenCBPcanbethebetterchoice.IncomparisontoCBP,FPhasthevirtueofnotperformingtoobadlyforlargesamplesandmediumvaluesofp.Forpotentialapplications,itmightbeinterestingtonotethatinalotofjuryandpaneldecisions,thenumberofvotersisquitesmall,typicallyN∈{5,7,...,15}.Hence,especiallywhenwehavesomereasonsnottofullytrustthevoterscompetence(take,forinstance,alaymenjuryinacriminaltrial),wehavearationaleforapplyingthefusionoperator.Forsuchcases,wealsosuggestfurthercalibrationsoftinordertocombinethepowerofPBPwiththeconservativenessofFP,e.g.t=0.5.Bycontrast,whenwefacealargenumberofvoters,forinstanceinaplebiscite,recommendingPBPisthesafestoptionduetotheasymptoticsuperiority.Suchcalibrationscanbefurtherrefinedbyconsideringtherelativeseverityofadecisionerror. t E.g.iferroneousacceptanceofS1wereinaspecificsituationmuchworsethan t erroneousrejectionofS1,wewouldtendtosetttoahighervaluethaniftheoppositeweretrue. 4 4.1 TheBayesianApproach GeneralRemarks TheprobabilisticframeworkwhichweusedfortheevaluationofPBP,CBPandFPcanbetransferredtoafullBayesianapproach,too.InaBayesianapproach,wehaveapriorprobabilitydistributionoverthesituationsS1toS4,givenagainby(q2,q(1−q),q(1−q),(1−q)2).Wetreatthejudgmentsofthevoters(callthemV)asincomingevidencewhichweusetoupdatethepriorprobabilitiestoaposteriordistributionoverS1toS4: P(Si|V) = P(Si)P(Si|V) P(V) Thisposteriordistributiondescribesourrationaldegreeofbeliefinthevarioussituations,giventheverdictsofthevotersandtheirindividualreliability.Thenwebaseourdecisionexclusivelyonthatposteriordistributionandtheutilitymatrixwhichdescribestheactualdecisionproblem. 11 acceptS1(“+S1”)rejectS1(“−S1”)S1istrue 10S1isfalse 01Table3:TheutilitymatrixthatcorrespondstousingP(G)asabenchmarkfortheperformanceoftheaggregationprocedures,shownasafunctionofthepossibleactionsandstatesoftheworld. Wearenowinterestedintheaverageprobabilitythattherightconclusion(S1or¬S1)isselected.Inotherwords,wewanttocalculateP(G)anduseitasathebenchmarkforthevariousaggregationprocedures.KeepinginmindthatP(G)=P(S1)P(+S1|S1)+P(¬S1)P(−S1|¬S1),thiscorrespondstoadecisionproblemwhereutility1isassignedtoacorrectconclusionselectionand0toawrongconclusionselection(seetable3).9 TheConditionalBayesPrinciple([1],p.8)tellsusthat,relativetoagiven(posterior)distribution,weoughttotaketheactionthatmaximizestheexpectedutility.Facedwiththeaboveutilitymatrix,wewilloptforS1ifandonlyifP(S1|V)>0.5. Wecangeneralizethatprincipletothefollowingdecisionrule:foranysetofjudgmentsthatwillbeobserved,taketheactionthatmaximizesexpectedutilityrelativetotheposteriordistributionwhichweobtainbyupdatingonthevoters’judgments.Indeed,itcanbeshownthatsuchadecisionruleisaBayesrule,i.e.adecisionrulethatminimizestheexpectedriskwithregardtothepriordistributionamongalldecisionrules.10HenceweseethatthedecisionrulegivenbytheBayesianapproachisoptimalintherisk-minimizing(orutility-maximizing)sense.Wecanbasealldecisionssolelyontheposteriordistributionandtheproblem-specificutilitymatrix. Thishasanumberofimplications.First,alldatathatdonotaffecttheposteriordistributionoftheSicanbeneglected.TheposteriordistributionisuniquelydeterminedbythenumberofvotesforAandB,inotherwords,thestatisticsaandb.Allfurtherinformationisirrelevant,giventhevaluesofthosefunctions.Technicallyspoken,aandbaresufficientstatistics.11Onceweknowthevaluesofaandb,wecantotallyneglecthowmanypeopleendorsedtheconclusion.Thisvindicatesanintuitionunderlyingthepremise-basedprocedure:completeinformationaboutthepremisesisallweneedtomakeareliabledecision.Indeed,theRao-BlackwellTheorem([1],p.41)guaranteesthatthereisnoinformationthatcanimprovethedecisionrulebeyondwhatiscontainedinthesufficientstatistics.Moreprecisely,anydecisionrulecanbeimprovedinawaythatitisonlyafunctionofthesufficientstatistics. Thisalsoimpliesthatboththepremise-andtheconclusion-basedapproachcannotbeoptimal:Botharebasedon0-1statisticsthatmeasurewhethertherearemajoritiesforA,BorC.Butthosestatisticsareneithersufficientnorjointlysufficient.Toomuchinformationgetslostwhenonlycheckingthemajorities.Asimilarresultholdsforfusion,wherethedecisionontherightconclusionisonlybasedonthestatistics(a+c)and(b+c)whichareneither(jointly)sufficient.Hence,noneofthethesethreeapproachescanbeoptimal.Contrarily,bythe otherwords,erroneouslyoptingforS1isequallydevastatingaserroneouslyoptingfor ¬S1.Asimilarmatrixcanbefoundforthesituationselectionproblem,seeagain[4].10Cf.Result1in[1],p.159. 11AstatisticTissufficientwithregardtoanunknownparameterΘwhenP(Θ=ϑ|T=t)=P(Θ=ϑ|X=x)whereXdenotesthefulldata. 9In 12 10.80.60.40.2 00.20.40.60.81Figure4:TheprobabilitythattheBayesianprocedureidentifiestherightcon-clusionasafunctionofthecompetenceofthevoterspforq=.7andN=11(dottedline),N=21(dashedline)andN=51(fullline). aforementionedtheorem,theBayesianapproachprovidesanupperboundforthereliabilityofalldecisionrules.WenowturntotheperformanceoftheBayesianapproachandcompareitsreliabilitytotheproceduresdiscussedintheprevioussection. 4.2ResultsandDiscussion InFigure4.2,wehaveplottedthereliabilityoftheBayesianaggregationpro-cedureasafunctionoftheindividualreliabilityforq=0.7andvariousgroupsizes(N=11,21,51).WeseethattheBayesianprocedureisalmostperfectlyreliablewhenpisfarfrom0.5.FromtheaboveargumentsitisclearthattheBayesianreliabilityconstitutesanupperboundforallotherprocedures.Also,weseethatthereliabilityismonotonouslyincreasinginN,anditapproaches1(pointwise)forallvaluesofpexceptforasmallneighbourhoodof0.5.Itcanevenbeshownthatforallvaluesofpexceptforp=0.5,theBayesianprocedureeventuallyselectstherightconclusion. Proposition3Foranyp=0.5,theBayesiandecisionruleeventuallyselectstherightconclusionP-a.s.whenN→∞. ThisdrawsourattentiontoanotherfeatureoftheBayesiananalysis:Itissymmetricasafunctionofp.SoBayesianaggregationisperfectlyreliableevenwhentheindividualvotersareveryunreliable.ThisshedslightonasubstantialpremiseoftheBayesianapproach,namelythatknowledgeofpandqisrequiredtoupdatethepriordistribution.Inotherwords,bothpandqhavetobetransparenttothedecisionmaker.Then,itisnomoresurprisingthattheBayesianprocedureishighlyreliableforp≈0:Whentheaggregatorsknowthatthevotersnearlyalwayssubmitwrongjudgments,theywilljustreplacetheindividualjudgmentsonthepremisesbytheirnegations.So,whenahighlyunreliablevotersubmits(1,0,0),thisamountstothesubmissionof(0,1,0)byahighlyreliablevoter.ThereforetheBayesianprocedureworksperfectlyfineforlowvaluesofp. Ontheotherhand,itisquestionablewhetherknowledgeofpandqcanreallybepresupposed.Suchtransparencyishardlyrealisticandnotapplicableinawideclassofcases.Forexample,anykindofassigningpriorprobabilitiesis 13 frowneduponinlegaldecisionmaking.Evenmoredisturbing,ourestimateoftheindividualvotingcompetencemaybegrosslymistaken.Forexample,as-sumethatweerroneouslyclaimthatp=0.5,i.e.webelievethevoterstoberandomizers.FortheBayesian,thismeansthattheresultsofthevotingprocesshavenoimpactontheposteriordistribution:itequalsthepriordistribution.Evenifthevotersunanimouslyendorsebothpremisesandtheconclusion,thishasabsolutelynoimpact.Inparticular,whenP(S1)≤0.5,evenanunanimousendorsementofS1doesnotleadtotheacceptanceofS1.Thisisaresultwhichweintuitivelyfindabsurd:NotonlydoestheBayesianrecommendationconflictwiththeprincipleofunanimity,thedataalsosuggesttoreviseourestimateofpbecauseunanimityismuchlesslikelyforrandomizingvotersthanforcompe-tentvoters.Forsuchanextremesetofsubmittedjudgments,wewouldrathertendtoacceptS1asitisrecommendedbyalldiscusseddistance-basedproce-dures.Thedataseemtofalsifyourpreviousestimatep=0.5.Sucharevisionis,however,notpossibleinagenuineBayesianframeworkbecausethiswouldamounttodouble-countingthedata:onceforelicitinganestimateofpandaf-terwardsforupdatingthepriordistribution.Assigningapriordistributionoverpandaveragingtheresultsoverthepriordistributionofp(“Bayesianmodelaveraging”)wouldmitigate,butnoteliminatetheeffect.WeleaveitopentofutureresearchwhethertheBayesianaggregationprocedurecanbeprotectedagainstsevereestimationerrors.Inanycase,theBayesianapproachcarriesaconsiderableestimationriskwhenpishardtoelicit. Inseveralcontextsitis,ofcourse,notawkwardtoassumethatpismoreorlesstransparent,e.g.whenwehaveNindependentmeasuringinstrumentsinascientificexperiment.InsuchacaseweshouldalwaysuseBayesianupdatingandmakeadecisiononthebasisoftheposteriordistribution.Butinavarietyofcaseswherehumanjudgmentsareaggregated,e.g.whenajuryhastodecideupontheliabilityofthedefendantortoawardordenytenuretoafacultymember,thecompetenceofthejurymaybehardtoestimate.Inparticular,theremaybenorelativesuccessfrequencyasabasisforanestimateofthevotingcompetence.Moreover,theBayesianprocedurewillsometimes,namelyforlowvaluesofp,recommendtodoexactlytheoppositeofwhatthevotersarethinking.ThispreventstheBayesianprocedurefrombeingappliedinmanypracticalcases.Itfaresbestwhenthedecision-makerhasasensibleestimateofpandwhenhedoesnotneedtheconsentofthevoterstotakeanaction.12Tosummarize:TheBayesianapproachhastheadvantagethatthedecisionprocedurecanbeflexiblyadaptedtotheparticularproblembychangingtheutilitymatrix.VariousjudgmentaggregationproblemsarecharacterizedbydifferentutilitymatricestowhichtheBayesianprocedurecanbeflexiblytrans-ferred.E.g.sendingsomeonetojailerroneouslyhasamuchhigherassociatedlossthansettingfreeaguiltyperson.Butdenyingtenuretoanoutstandingresearcherandteachermightbeworsethangivingtenuretoapersonwhoisacapableresearcherbutonlyamediocreteacher.Inotherwords,theutilitiestelluswhichkindoferrorwehavetoavoid.TheBayesianapproachnaturallyincorporatesthevariationinthelossesassociatedwithawrongdecisionofacertainkindwhereasdistance-basedapproachesasCBP,PBPandFParenotsensitivetotheseverityofaparticularkindoferror.TheBayesianframeworkcanbenaturallyextendedtoconnectionrulesdifferentfromtheconjunctionofthepremises,too.Ontheotherhand,thedistance-basedproceduresdonot far,wehavebeensilentonthepossibilityofstrategicvotingwhichcanoccurinthe Bayesianmodelaswellasinthedistance-basedapproaches.Thereforeweassumethatthevotershavenointerestinaspecificconclusion–otherwisenovoterwouldsubmitthejudgmentsetS2orS3. 12So 14 involveacomplicatedcalculationofposteriorprobabilitiesandtheyareeasiertoapplytorealdecisionproblems. 5Conclusions Bymeansofthet-parametrizationinsection2,wehaveintegratedPBP,CBPandFPintoacontinuumofdistance-basedprocedures,withFPtakingamiddlepositionbetweenthetwoextremesPBPandCBP.Therebyweachieveaconcep-tualunificationwithregardtothetraditionalmethodsofjudgmentaggregation.Withregardtoselectingtherightconclusion,thedistance-basedproceduresaretheoreticallyinferiortotheBayesiandecisionprocedurewhichalsoenjoyshighflexibility.Nevertheless,theBayesianapproachcanonlybeappliedwhentheindividualcompetencepandthepriorprobabilityqofeachpremisecanbeelicited.Often,estimatingpmightbeassociatedwithaunpredictableestima-tionrisk,deterioratingtheperformanceoftheBayesianapproach.Thiswasillustratedinthetoyexampleoftheprevioussection.Inpractice,workingwithanestimateofpmightalsobeprohibitedbyexternal,pragmaticconstraints.Themoreweareuncertainaboutp,themoreweshouldbeinclinedtoapplyadistance-basedapproachwhichperformsreasonablywellforvariousvaluesofp.Themostsuitablevalueoftthendependsontheactualnumberofvotersandtheestimatedpriorprobabilities.Distance-basedapproaches,althoughnotstrictlyoptimalfromatheoreticalpointofview,mightbeareasonablecompro-misebetweentwoends:toneglectanestimateofindividualcompetenceintheactualdecision-makingandtohaveaprocedurethatreliablyselectstherightconclusion.Amongtheseprocedures,thosewhichresemblethepremise-basedprocedure(t1)willusuallyperformbest.Theprecisecalibrationoftinanactualapplicationissensitivetothespecificsocialdecisionproblemandwillbeinvestigatedinfurtherwork.Moreover,oursequelpaper[4]examinestheperformanceofthediscussedproceduresattrackingtherightsituation. A A.1 Calculationaldetails Propertiesofthefusionoperator WeexaminethecaseA∧B↔C.ThereareNvotersandweassumethatNisanoddnumber≥3.n1votersvoteforS1=(1,1,1),n2forsituationS2=(1,0,0),n3forsituationS3=(0,1,0)andn4forsituationS4=(0,0,0).Obviously,N=n1+n2+n3+n4.Fusionchoosesthemodelwhichhasthe4 1 lowestdistancetotheaverageofsubmittedjudgmentsets,S:=Ni=1niSi(cf.equation(2)).Forreasonsofconvenience,weworkwiththeHammingdistancewhichcorrespondstothe1-NorminrealEuclideanvectorspaces.(Asmentionedinthemaintext,allnormsareordinallyequivalent).LetadenotethenumberofvotersthatvoteforpremiseAandbthenumberofvotersthatvoteforB.Accordingly,letcdenotethenumberofvotersthatvotefortheconclusionC.Letdi:=Si−S1.Hence,fusionranksmodelSifirstifandonlyifdi ProofofFact1:Thefirstclaimistrivial.Fortherest,notethatN(d2−d1)N(d3−d1)N(d4−d1) == (N−a)+b+c−(N−a)−(N−b)−(N−c)=2b+2c−2Na+(N−b)+c−(N−a)−(N−b)−(N−c)=2a+2c−2N =a+b+c−(N−a)−(N−b)−(N−c)=2a+2b+2c−3N Thefirsttwoequationsyieldd1 N(d4−d1)>a+b−N>0 (5) becausea+c>Nalsoimpliesa>N/2andanalogouslyforb.Thus,alsod1 1 (N−a+N−b+t(N−c))N1dt(a+N−b+tc)3=Ndt1= 1 (N−a+b+tc)N1dt(a+b+tc)4=Ndt2= tt AdecisionforS1ismadeifandonlyifdt1 wealsogetc≤N/2andt(N−c)≥tcforallvaluesoft.Henceeitherdt1≥d2 tt ordt1≥d3sothatS1isrejectedindependentofthevalueoft. t Thereforeassumethata,b>N/2.ThenadecisionfortheconclusionS1 t amountstodt1 2a−N+2b−N+t(2c−N)>0 Obviously,thefirsttwoinequalitiesentailthethirdone. Fort=1,thisleadstotheusualconditionsa+c>Nandb+c>N,asshowninfact1. Fort=0,theinequalitiesaresatisfiedifandonlyifa>N/2andb>N/2,i.e.whenthereisamajorityforeachofthepremises.HenceweobtainPBP. Finally,forverylarget,the2a−Nand2b−Ntermsdropoutofthepicture. t HenceweacceptS1ifandonlyifc≥N/2.CBP–accepttheconclusionifandonlyifitisendorsedbyagenuinemajority–isobtainedinthelimitt→∞.Remark:Itisasimplefactoflinearalgebrathattherelativeorderingbetween tt thedistancesdt2,d3andd4isnotaffectedbythevalueoft.So,theproofwouldgothroughevenifweaimedatchoosingtherightsituationinsteadoftherightconclusion. ProofofFact3:Thefirstinequalityistrivial.Forthesecondone,the m maximalsetofvoterswhodonotaccepttheconclusionisi=1(N−ai).Hence, mm c≥N−i=1(N−ai)=i=1ai−(m−1)N. 16 Forthesecondclaim,firstassumethatthereisanisothatai+c≤N≡N−c≥ai.Then,bymeasuringdistancebythesupremumnorm,weseethat sup(N−a1,N−a2,...,N−am,N−c)=≥ N−c sup(N−a1,N−a2,...,N−ai−1,ai,N−ai+1,...,c) sothatSi:=(1,1,...,1,0,1,...,0)isclosertoSthanS1=(1,1,...,1).HenceS1isrejected. Nowassumethat∀i:ai+c≥N.ThenS1ischosenifandonlyifN−c Asymptoticalbehaviourofthedistance-basedproce-dures t ProofofProposition2:UnderS1,aisBN,p-distributed.Similarly,b∼BN,pandc∼BN,p2.AllthreevariablesaresumsofNindependentandidenticallydistributedrandomvariablessothattheStrongLawsofLargeNumbersap-plies.ItfollowsthatP-a.s.a/N,b/N→p,c/N→p2.Inparticular,withtheexceptionofasetofmeasurezero, abc ∈(p2−ε,p2+ε),,∈(p−ε,p+ε)(6)NNN2Choose(3+3t)ε:=2tp+2p−(1+t).Asimplecomputationyieldsthat √ 2tp2+2p−(1+t)>0ifandonlyifp>pt:=(1/2t)(2t2+2t+1−1)for tt t=0andp>0.5fort=0.RecallthatS1ischosen(“+S1”)ifandonlyif ca 2−1+t2−1>0NN (7)bc 2−1+t2−1>0NN ∀ε≥0∃N0∀N≥N0: (cf.theproofofproposition1).Andindeed,forp>ptandN≥N0, ca 2+t2−1NN >2p−2ε−1+t(2p2−2ε−1) = (3+3t)ε−2ε−2tε>0 Exactlythesamecomputationcanbedonefortheotherequationin(7).Thus, t ifp>pt,P-almostsurelytherightconclusioniseventuallychosenifS1istrue.Assumeontheotherhandthatp≤pt.Then,invirtueof(6),forN≤N0, ca 2+t2−1NN <2p+2ε−1+t(2p2+2ε−1) =<0 t andeventuallyselectsthewrongconclusionisP-a.s.selectedifS1istrue.√Fort→∞(CBP),asimpleasymptoticanalysisyieldstheconditionp>1/2,(−3−3t)ε+2ε+2tε 17 whereast=0(PBP)amountstop>0.5.Finally,inthecaset=1(FP),we√ getthethresholdp>(5−1)/2. t ProofofCorollary1:Proposition2hasalreadyprovedthat,ifS1istrue,therightconclusioniseventuallychosenP-a.s.ifandonlyifp>pt.Threeremainingcasesaretoexamine. t (a)S2istrue.Ifp>0.5wewillP-a.s.getb ,independentofthevalueoft.rejectS1t (b)S3istrue.Thesameas(a)duetosymmetry. t (c)S4istrue.Ifp>0.5wewillP-a.s.geta,b Sincep>ptentailsp>0.5,alldistance-basedprocedureseventuallychoosetherightconclusionP-a.s.ifandonlyifp>pt. A.3Bayesianposteriors WecalculatetheposteriorprobabilityofS1conditionalontheobservedvariablesaandb,thenumberofvotesforpremiseAandB,respectively.Calculationsarecompletelyanalogousfortherivallingmodels.LetLij(a,b)bethelikelihoodratioofsituationSitosituationSjasafunctionofthedatax.Then,wehave 2b−N2a+2b−2N2a−N 2a−N2a−2b2b−N L21(a,b)=L41(a,b)=L42(a,b)= 1−pp1−pp1−pp L31(a,b)=L32(a,b)=L43(a,b)= 1−pp1−pp1−pp 1 NotethatLij(a,b)=L−ji(a,b).WecannowcalculatetheposteriordistributionifavotesforpremiseAandbvotesforpremiseBaresubmitted: P(S1|a,b) = P(S1)P(a,b|S1)P(S1)P(a,b|S1) =4P(a,b)i=1P(Si)P(a,b|Si) 4P(Si)1+Li1(a,b) P(S)1i=2 −1 = = 1+ 1−q1−qL21+L31+qq 1−q q 2 −1L41 =: M−1 Inotherwords,wedenotetheterminsidethesquarebrackets(withoutthe 18 exponent)byM.ForanyeventE,duetoindependence, P(E|S1) = NNNNaN−ap(1−p)pb(1−p)N−b1E abNNNNaN−a p(1−p)(1−p)bpN−b1E abNNNN (1−p)apN−apb(1−p)N−b1E abNNNN (1−p)apN−a(1−p)bpN−b1E ab a=1b=1 P(E|S2) = a=1b=1 P(E|S1) = a=1b=1 P(E|S4) = a=1b=1 1Edenotesthe0-1indicatorfunctionoftheeventE.AssumenowthatS1is true.WhenwewanttocalculatetheprobabilitythattheBayesiandecisionproceduregetstheconclusionright,wecomputetheprobabilitythatMissmallerthan2,giventhepriordistribution: P(+S1|S1) = P(M<2|S1) whichcanbecalculatednumericallyaccordingtotheprobabilitydensitiesgivenabove.Analogously, P(−S1|¬S1) =P(−S1|S2∨S3∨S4) 12 q(1−q)P(−S|S)+q(1−q)P(−S|S)+(1−q)P(−S|S)=121314 1−q212 =2q(1−q)P(M≥2|S)+(1−q)P(M≥2|S)24 1−q2sothatwecancomputeP(G). A.4Bayesianasymptotics ProofofProposition3:Itisclearthatforp=0.5,thereliabilityoftheBayesiandecisionruleisconstantinN,becausethejudgmentsofthevotersdonotaffecttheposteriordistribution.Twocasesremaintoexamine. (a)p<0.5.AssumeS1istrue.Then(1−p)/p>1andinthelongrun,almostcertainlya,b References [1]J.O.Berger.StatisticalDecisionTheoryandBayesianAnalysis.Second Edition.Springer,NewYork,1985. 19 [2]L.BovensandW.Rabinowicz.Democraticanswerstocomplexquestions. Anepistemicperspective,Synthese,150:131–153,2006.[3]F.DietrichandC.List.Arrow’stheoreminjudgmentaggregation.Social ChoiceandWelfare,2006.[4]S.Hartmann,GPigozzi,andJ.Sprenger.Judgmentaggregationandthe problemoftruth-tracking.Inpreparation.[5]S.KoniecznyandE.Gr´egoire.Logic-basedapproachestoinformationfusion. InformationFusion,7:4–18,2006.[6]S.KoniecznyandR.Pino-P´erez.Mergingwithintegrityconstraints.InFifth EuropeanConferenceonSymbolicandQuantitativeApproachestoReason-ingwithUncertainty(ECSQARU’99),pages233-244,1999.[7]C.List.Theprobabilityofinconsistenciesincomplexcollectivedecisions. SocialChoiceandWelfare,24(1):3-32,2005.[8]C.List.Thediscursivedilemmaandpublicreason.Ethics,116(2):362–402, 2006.[9]C.List.Judgmentaggregation-Abibliographyonthediscursivedilemma, thedoctrinalparadoxanddecisionsonmultiplepropositions.2007http://personal.lse.ac.uk/LIST/doctrinalparadox.htm[10]C.ListandP.Pettit.Aggregatingsetsofjudgments:Animpossibility result.EconomicsandPhilosophy,18:89-110,2002.[11]G.Pigozzi.Beliefmergingandthediscursivedilemma:anargument-based accounttoparadoxesofjudgmentaggregation.Synthese,152(2):285-298,2006. 20 因篇幅问题不能全部显示,请点此查看更多更全内容