首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

P11.3 EFFECTS OF NESTING FREQUENCY AND LATERAL BOUNDARY PERTURBATIONS ON THE DISPERSION OF

2023-05-16 来源:化拓教育网
P11.3

EFFECTSOFNESTINGFREQUENCYANDLATERALBOUNDARYPERTURBATIONS

ONTHEDISPERSIONOFLIMITED-AREAENSEMBLEFORECASTS

PaulNutter∗1,2,DavidStensrud3,andMingXue1,2

1

SchoolofMeteorologyand2CenterforAnalysisandPredictionofStorms,

UniversityofOklahoma,Norman,Oklahoma3

NationalSevereStormsLaboratory,Norman,Oklahoma

1.Introduction

Itisknownthat”one-way”lateralboundarycon-ditionsconstrainthegrowthofinitialperturba-tionsinlimited-areaensembleforecasts(Pae-gleetal.,1997,referencestherein).Externalboundaryconditions(LBCs)typicallylackfine-scalefeatures,andinthecaseofensemblefore-casts,alsolackconsistentperturbations.Pertur-bationsgrowingonthenesteddomainbecomedisplacedbythecoarselyresolvedLBCs(ErricoandBaumhefner,1987;VukicevicandPaegle,1989)whilethedomainsizeitselfdeterminesthemaximumwavelengthattainablebytheperturba-tions(VukicevicandErrico,1990).

Anotheraspectoftheboundaryconditionprob-lemthathaspreviouslyreceivedlittleattentionistheimpactofLBCupdateinterval(Warneretal.,1997).Commonlyusedlinearinterpolationbe-tweenrelativelyinfrequentLBCupdatesactsasafilterthatexacerbatesthescaledeficiencyprob-lem.

Short-rangeensembleforecastexperimentshaveshownthattheensemblesoftenareunderdispersive.Thatis,theverifyinganalysisdoesnotfallwithintherangeofpossibilitiesforecastbytheensemble.DuandTracton(1999)foundthataregionalensemblewithalargerdomainproducesgreaterspreadthandoesanensem-blewithasmallerdomain.Furthermore,theyfoundthatthecontributionofdifferentLBCstoensemblespreadincreaseswithtimewhilethatofinitialconditionperturbationsdecreaseswithtime.Theseandothersimilarresults(HamillandColucci,1997;Houetal.,2001;Stensrudetal.,2000)demonstratethat,withtime,thespreadoftheLAMensembleforecastbecomesincreas-inglydeterminedbythespreadintheglobalen-sembleashighfrequencyandsmallscalecom-ponentsare“swept”fromtheLAMdomain.

Tohelprestoretheerrorvariancelostatsmallscales,weproposetoapplycoherentperturba-∗Corresponding

authoraddress:PaulNutter,CAPS,Uni-versityofOklahoma,100E.BoydSt.,Rm.1110,Norman,OK73019;e-mail:pnutter@ou.edu.

tionstotheLBCsatscalesunresolvedbytheex-ternalmodel.Theamplitudeofsuchperturba-tionswillbechosentomimictheexponentialer-rorgrowthcurvesgeneratedfromsimulationsinunboundeddomains.Theuseofmorefrequentlyupdatedboundaryconditionsandtheinclusionofsmall-scaleboundaryperturbationswillbeshowntoenhancethedispersionforlimited-areaensem-bleforecasts.

Inthispaper,necessaryanalysistoolsarein-troducedalongwiththeparameterizedpotentialvorticitymodelusedinthisstudy.WewillthenpresentresultsontheeffectofLBCupdatein-tervalonthenested-gridensembledispersion.Otherresultswillbepresentedattheconference.2.

EnsembleMSEandDispersion

Beforeintroducingtheunderlyinghypothesisforthisworkinsection3.,itisusefultoreviewstan-dardensemblestatisticalmethods.ConsiderNmembersofanensembleforecastf(t)andcor-respondinganalysesa(t)givenasvectorsonap-elementgrid.Althoughidenticalinaregularensembleconfiguration,lettheanalysescorre-spondingtoeachforecastbeuniqueforgener-ality.Theensemblemean-squareerror(MSE)is

V2

=1󰀁N󰀅fi−ai󰀅2

N(1)

i=1where󰀅·󰀅2istheaveragesumofsquares(dotproduct)overthegrid(StephensonandDoblas-Reyes,2000).Togainfurtherinsight,addandsubtracttheensemblemeanforecast¯fandanal-ysis¯ainside(1),thenexpandandmanipulatesothat

V2

=1N󰀁N󰀅fi−¯f󰀅2

+1󰀁N󰀅ai−¯a

󰀅2(2)

i=1Ni=1−2N󰀁N1

(fi−¯f)·(ai−¯a)+󰀅¯f−¯a

󰀅2.i=1p

Notethatananalogousexpressionmaybefoundbyaddingandsubtractingthegridmean(scalar)

forecastandanalysisforeachensemblemember,multipliedbytheidentityvector.Thevarianceandcovariancetermsin(2)maybecombinedtowritethetotalbiasederrorvariance

Nσ2≡V2−󰀅¯f−¯a󰀅2=1N󰀁󰀂󰀂󰀂(fi−ai)−(f−a)i=1

󰀂󰀂󰀂2.(3)

Ensembleforecastsusuallyareverifiedagainst

oneanalysis.Inthatcase,ai=¯a

=a,andboth(2)and(3)reduceto

V

2

=

1󰀁

N󰀅fi−¯f󰀅2+󰀅¯f−a󰀅2

Ni=1

=D2+󰀅¯f−a󰀅2,

(4)

whereD2istheensembledispersion,orspread.

ThisresultshowsthatthesquarederroroftheensemblemeanislessthantheensembleMSEV2becauseensembledispersionallowsunpre-dictablecomponentsofflowtobeaveragedoutintheensemblemean(Leith,1974;StephensonandDoblas-Reyes,2000).Notethatwhencom-paringallensemblememberstooneanalysisasin(4),D2=σ2.

Asinitialforecasterrorsgrowwithtime,ensem-bleforecastmembersbecomeuncorrelatedwithanalysesandtheircovarianceiszero.Iffore-castsareunbiasedandhavethesamevarianceastheanalyses,thentheexpectedvalueof(2)convergesasV2=2D2.ThisistheclassicresultobtainedbyLeith(1974),andmotivatesthecom-monpracticethattotalerrorvariancesbenormal-izedbytheclimatevarianceofanalyses.3.ImpactofLBCsonTotalErrorVarianceEquation(4)revealsalinear,additiverelationbe-tweenV2andD2,therebyprovidingadirectlinkbetweenensembleMSEandensembledisper-sion.ThefollowingargumenthighlightschangesinensembleMSE(hence,ensembledispersion)resultingfromcoarselyresolvedlateralboundaryforcing.

Supposewedecomposetheforecastandanal-ysisfieldsonthenesteddomainintolongwaveandshortwavecomponentssothatf=fl+fsanda=al+as.Theshortwavecomponentsarethosescalesnotresolvedbytheexternalmodel,whilelongwavecomponentsarethosescalescommonlyresolvedonbothexternalandinternalgrids.

Lettheshortwavecomponentsoftheforecastbedecomposedfurthertoincludelossesbyad-

vective“sweeping”andregenerationbynonlin-eardynamicdownscalingsothatfs=fα+fη.Withtime,fαcomponentsaredisplacedbythecoarselyresolvedLBCs,suggestingtheassump-tionthattheiramplitudestendtowardzero.NotethattemporalinterpolationofLBCsactsasafilterthatmaylengthenthescalefαcomponents.Fol-lowingfrom(1)whiledroppingisubscripts,theresultingimpactofLBCsontheensembleMSEisV

2

=1N󰀁N0󰀅fl+f 󰀒 α+fη−al−as󰀅2

i=1

=

1󰀁N󰀅(f1N

l−al)󰀅2

+󰀁󰀅fη−as󰀅2

Ni=1Ni=1+2N󰀁N

1(fl−al)·(fη−as).i=1p

(5)

Thisequationprovidesinsighttothehypothe-sisthatlimited-areamodelsareabletoproducefine-scaleinformationnotpresentinthecoarse-gridexternalmodel.Theextenttowhichsmall-scalewavecomponentsareskillfullyregeneratedwilldependonthesizeandlocationofthenesteddomainandontheLBCupdateinterval.Thus,animportantaspectofthisworkistodeterminetherelativecontributionoftheregeneratedvariancecomparedtothetotalvariance.

Toquantifythecontributionsofeachtermin(5),variancesarecomputedspectrallyusingthemethodoutlinedbyErrico(1985).Specifically,ifF(k)isthediscreteFouriertransformoftheerrorfield,then(3)maybeobtainedas

σ2=1N󰀁NK󰀁−12|Fi(k)|2

,

(6)

i=1

k=1

wherek=1,...,K−1arethesetofNyquistresolvedwavenumbers.

Skillismeasuredbynormalizingvarianceswithindifferentwavelengthbandsbytheclimato-logicalvariancesobtainedspectrally.Whennor-malizedinthismanner,resultsmaybecomparedtootherstudiessuchasLapriseetal.(2000).4.

ParameterizedPotentialVorticityModel

AsimplifiedmodelisusedforthisworktohelpisolateonlythoseerrorsassociatedwithLBCsinacontrolledandefficientmanner.Emphasisisdi-rectedtowardslargescalemid-troposphericflowsincethesearethepatternsthatareimportantforaccurateplacementofdevelopingmesoscale

Figure1:PPVmodelsimulationona25kmgrid,

15daysafterinitializingwithaperturbedshearflow.Streamfunctioncontoursareshowninbothpanels(ψ×106m2s−1).Shadingin(a)indicatesrelativevor-ticitygreaterthan±2×10−5s−1.Shadingin(b)showswindspeedsgreaterthan20ms−1.Boxesshowout-linesoffourdifferentsub-gridsusedforsingly-nestedmodelconfigurations.

andsmallerfeatures(Paegleetal.,1997).Fur-thermore,wewishtoexcludefromconsiderationinthisworkthehypothesisthatpredictabilityisenhancedundertheinfluenceofsurfaceforcing(VanTuylandErrico,1989;Warneretal.,1989).Thesingle-levelgridpointmodelrunsonamid-latitudebetachannelandisbasedonanapprox-imationofthequasi-geostrophicpotentialvortic-ityequation.Letξ≡ζ−λ2ψdefineapa-rameterizedrelativepotentialvorticity,whereζistherelativevorticity,ψisthestreamfunction,andλ=7.071×10−7m−1isaninverselengthscalebasedontheRossbyradiusofdeformation(Holton,1979).Theparameterizationrepresentsthefirst-ordereffectsofverticalmotionsinabaro-clinicatmosphere(vortexstretching).Theparam-eterizedpotentialvorticity(PPV)modelis

∂ξ

=−∂ψ∂ξ−∂ψ∂ξ∂x−β∂ψ∂x

−ν∇4∂t∂x∂y∂yξ.(7)

Ifλ=0thePPVmodelreducestothestandardbarotropicvorticitymodel,exceptforthe4thordernumericaldiffusionterm.Anexampleofthevor-ticityandstreamfunctionfieldsproducedbythePPVmodelisshowninFig.(1).5.ImpactofNestingInterval

Theimpactofnestingintervalisexploredinaper-fectmodelconfigurationfollowingthemethodde-scribedbyLapriseetal.(2000).PerfectinitialconditionsandLBCsareprovidedbyanexternal

controlsimulationthatmaybelow-passfilteredtoremovepoweratsmallscales.Initialcondi-tionsarenotperturbed,sotheonlysourceofer-roristhatduetointerpolationbetweenavailableLBCupdatesandthewaveabsorbingzoneusedfor“one-way”nesting.Normalizedvariancesfortheresultingfieldswerecomputedspectrallyasdiscussedaboveandaveragedover100cases.Dispersionstatisticsfromplannedensembleex-perimentsshouldappearsimilartoresultsshownhere.

Afrequencyanalysisofatimeseriesofξatasinglegridpointrevealsthat99.6%ofthevari-anceisexplainedbywaveshavingperiodslongerthan3hours.Theperfectmodelsimulationswereconsistent,showingthatboundary-inducederrorswereminimalwhenLBCsareupdatedatintervalsof3hoursorless.ErrorsbecomemuchlargerwhenLBCsareupdatedevery6hoursasshowninFig.2.

Inanotherwiseperfectmodelsimulation,LBCinterpolationcausesinconsistenciesbetweentheexternalandinternalfields.Attemptstosmooththediscontinuityacrosstheboundaryzonegen-eratesasmallscalewavethatentersthenesteddomain.Fromthere,thedisturbancemayei-therdissipateoramplify,dependingonitsam-plitudeandstabilityoftheambientflow.Com-paredtothelargedomain,boundary-induceder-rorsonthemediumandsmall(center)domainsgrowfasterwithtimeandstabilizeatdifferentsat-urationpoints(Fig.2).Onthesmall(south)do-main,locatedoutsidethemainjetprofile,theflowisweakanderrorsgrowmoreslowlywithtime.Inotherexperiments,LBCswerelow-passfil-teredtoexaminetheabilityofthenestedgridtoregenerateshortwavelengths,eveninthepresenceofcontinuedcoarse-resolutionbound-aryforcing.Figure(3)showssomerecoveryofskillatsmallscalesduetodynamicdownscaling.However,afterfourdaystheerrorshaveaboutthesameleveloferrorasthepreviouscase,in-dicatingthatLBCerrorshavesweptthroughthedomain.Inallcases,longwavecomponentsareminimallyaffectedsincetheLBCiswell-sampledatthesescales.6.

Summary

ThegoalofthisworkistoquantifytheextenttowhichcoarselyresolvedLBCsmodifyerrorvari-ances(hence,ensembledispersion)forlimited-domainsolutions.Ifitcanbeshownthatensem-bledispersionisdeficientdue,inpart,tocoarsely

Large domain

11Medium domain

0.80-250 km250-500 km0.80.6500-750 km> 750 km

0.60.40.40.20.2000

1224364860728496

0

1224364860728496

Small domain, center

Small domain, south

110.80.80.60.60.40.40.20.2000

1224364860728496

0

1224364860728496

Time (hours)Time (hours)

Figure2:Normalizedvorticityvariancesat250km

wavelengthintervalsforperfectmodelsimulationsrunona50-kmgridwithLBCslow-passfilteredtoex-cludewavelengths<400-km.LBCsareupdatedevery6hours.

Large domain

11Medium domain

0.80-250 km250-500 km0.80.6500-750 km> 750 km

0.60.40.40.20.2000

1224364860728496

0

1224364860728496

Small domain, center

Small domain, south

110.80.80.60.60.40.40.20.2000

1224364860728496

0

1224364860728496

Time (hours)Time (hours)

Figure3:AsinFig.2,exceptinitialconditionsarealso

low-passfiltered.

resolvedLBCs,thenaprocedurewillbedevel-opedtoaddsmallscaleLBCperturbationsusingparametricexponentialerrorgrowthcurves.

Errorgrowthcurvesobtainedfromensemblesimulationsontheexternalperiodicchanneldo-mainwerenotyetcompleteatthetimeofwrit-ing.Theseresults,alongwithamoredevelopedmethodforperturbingLBCsatunresolvedscalesusingerrorgrowthcurveswillbepresentedattheconference.

AcknowledgementThefirstauthorissupportedby

aWilliamsGraduateResearchFellowshipthroughtheCenterforAnalysisandPredictionofStormsattheUni-versityofOklahoma.Computationalsupportwaspro-vided,inpart,byNSSL.

References

Du,J.andM.S.Tracton,1999:Impactoflateralbound-aryconditionsonregional-modelensemblepredic-tion.Researchactivitiesinatmosphericandoceanicmodeling,Report28,H.Ritchie,ed.,WMO,TD-942,6.7–6.8.

Errico,R.andD.Baumhefner,1987:Predictabil-ityexperimentsusingahigh-resolutionlimited-areamodel.Mon.Wea.Rev.,115,488–504.

Errico,R.M.,1985:Spectracomputedfromalimitedareagrid.Mon.Wea.Rev.,113,1554–1562.

Hamill,T.M.andS.J.Colucci,1997:Verificationofeta-rsmshort-rangeensembleforecasts.Mon.Wea.Rev.,125,1312–1327.

Holton,J.R.,1979:AnIntroductiontoDynamicMete-orology,volume23ofInternationalGeophysicsSe-ries.AcademicPress,2ndedition.

Hou,D.,E.Kalnay,andK.K.Drogemeier,2001:Objec-tiveverificationofthesamex’98ensembleforecasts.Mon.Wea.Rev.,129,73–91.

Laprise,R.,M.R.Varma,B.Denis,D.Caya,andI.Za-wadzki,2000:Predictabilityofanestedlimited-areamodel.Mon.Wea.Rev.,128,4149–4154.

Leith,C.E.,1974:Theoreticalskillofmontecarlofore-casts.Mon.Wea.Rev.,102,409–418.

Paegle,J.,Q.Yang,andM.Wang,1997:Predictabilityinlimitedareaandglobalmodels.Meteorol.Atmos.Phys.,63,53–69.

Stensrud,D.J.,J.-W.Bao,andT.T.Warner,2000:Us-inginitialconditionandmodelphysicsperturbationsinshort-rangeensemblesimulationsofmesoscaleconvectivesystems.Mon.Wea.Rev.,128,2077–2107.

Stephenson,D.B.andF.J.Doblas-Reyes,2000:Sta-tisticalmethodsforinterpretingmontecarloensem-bleforecasts.Tellus,52A,300–322.

VanTuyl,A.H.andR.M.Errico,1989:Scaleinterac-tionandpredictabilityinamesoscalemodel.Mon.Wea.Rev.,117,495–517.

Vukicevic,T.andR.M.Errico,1990:Theinfluenceofartificalandphysicalfactorsuponpredictabilityes-timatesusingacomplexlimited-areamodel.Mon.Wea.Rev.,118,1460–11482.

Vukicevic,T.andJ.Paegle,1989:Theinfluenceofone-wayinteractinglateralboundaryconditionsonpredictabilityofflowinboundednumericalmodels.Mon.Wea.Rev.,117,340–350.

Warner,T.T.,L.E.Key,andA.M.Lario,1989:Sen-sitivityofmesoscale-modelforecastskilltosomeinitial-datacharacteristics,datadensity,dataposi-tion,analysisprocedureandmeasurementerror.Mon.Wea.Rev.,117,1281–1310.

Warner,T.T.,R.A.Peterson,andR.E.Treadon,1997:Atutorialonlateralboundaryconditionsasabasicandpotentiallyseriouslimitationtoregionalnumer-icalweatherprediction.Bull.Amer.Met.Soc.,78,2599–2617.

因篇幅问题不能全部显示,请点此查看更多更全内容