首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

Smartseq2 scRNA小鼠发育学习笔记-3-标记基因可视

2024-12-20 来源:化拓教育网

前言

将对应文章这张图(不过H这张图使用的是差异基因,是下一篇的内容;这里先用marker基因尝试一下):

等高线图和热图

会根据之前的6个发育时期和4个cluster的tSNE结果,进行一些marker基因的等高线图和热图可视化

另外还有小提琴图

小提琴图
对marker基因可视化的目的还是说明之前分的群是有道理的,文章中也提到了:
文章说明

1 首先还是使用包装好的代码进行可视化

1.1 加载表达矩阵、获得cluster信息

rm(list = ls()) 
options(warn=-1) 
options(stringsAsFactors = F)
source("../analysis_functions.R")
load('../female_rpkm.Rdata')

# 加载之前HCPC分群结果
cluster <- read.csv('female_clustering.csv')
female_clustering=cluster[,2];names(female_clustering)=cluster[,1]

> table(female_clustering)
female_clustering
 C1  C2  C3  C4 
240  90 190  43 

1.2 拿到文章中的marker基因列表

作者要对哪些基因可视化,都是有自己的思量的

# 作者选择的14个marker基因
markerGenes <- c(
  "Nr2f1",
  "Nr2f2",
  "Maf",
  "Foxl2",
  "Rspo1",
  "Lgr5",
  "Bmp2",
  "Runx1",
  "Amhr2",
  "Kitl",
  "Fst",
  "Esr2",
  "Amh",
  "Ptges"
)

1.3 提取marker基因小表达矩阵

gene_subset <- as.matrix(log(females[rownames(females) %in% markerGenes,]+1))

> dim(gene_subset)
[1]  14 563

> gene_subset[1:4,1:4]
     E10.5_XX_20140505_C01_150331_1 E10.5_XX_20140505_C02_150331_1 E10.5_XX_20140505_C03_150331_1 E10.5_XX_20140505_C04_150331_2
Kitl                       2.547141                       1.172887                      4.1123988                       4.032277
Lgr5                       0.000000                       0.000000                      0.0568497                       0.000000
Esr2                       0.000000                       0.000000                      0.0000000                       0.000000
Fst                        0.000000                       0.000000                      0.0000000                       2.694897

## 然后对这个小表达矩阵再细分,根据4个cluster的列名,也即是前面female_clustering=cluster[,2];names(female_clustering)=cluster[,1]这一步的目的
cl1_gene_subset <- gene_subset[, colnames(gene_subset) %in% names(female_clustering[female_clustering=="C1"])]
cl2_gene_subset <- gene_subset[, colnames(gene_subset) %in% names(female_clustering[female_clustering=="C2"])]
cl3_gene_subset <- gene_subset[, colnames(gene_subset) %in% names(female_clustering[female_clustering=="C3"])]
cl4_gene_subset <- gene_subset[, colnames(gene_subset) %in% names(female_clustering[female_clustering=="C4"])]

## 重新再组合起来
heatmap_gene_subset <- cbind(
  cl1_gene_subset, 
  cl2_gene_subset,
  cl3_gene_subset,
  cl4_gene_subset
)

1.4 根据marker基因的顺序,重新排列这个矩阵

# 之前是这样
> rownames(heatmap_gene_subset);markerGenes
 [1] "Kitl"  "Lgr5"  "Esr2"  "Fst"   "Runx1" "Amhr2" "Bmp2"  "Rspo1" "Nr2f2" "Amh"   "Foxl2" "Ptges" "Maf"   "Nr2f1"
 [1] "Nr2f1" "Nr2f2" "Maf"   "Foxl2" "Rspo1" "Lgr5"  "Bmp2"  "Runx1" "Amhr2" "Kitl"  "Fst"   "Esr2"  "Amh"   "Ptges"

# 得到marker基因在heatmap_gene_subset中的位置
match(markerGenes,rownames(heatmap_gene_subset))

# 然后就能提取出和marker基因顺序一样的heatmap_gene_subset
heatmap_gene_subset <- heatmap_gene_subset[match(markerGenes,rownames(heatmap_gene_subset)),]

# 之后是这样
> rownames(heatmap_gene_subset);markerGenes
 [1] "Nr2f1" "Nr2f2" "Maf"   "Foxl2" "Rspo1" "Lgr5"  "Bmp2"  "Runx1" "Amhr2" "Kitl"  "Fst"   "Esr2"  "Amh"   "Ptges"
 [1] "Nr2f1" "Nr2f2" "Maf"   "Foxl2" "Rspo1" "Lgr5"  "Bmp2"  "Runx1" "Amhr2" "Kitl"  "Fst"   "Esr2"  "Amh"   "Ptges"

1.5 修改表达矩阵的列名,得到6个时间点信息

heatmap_female_stages <- sapply(strsplit(colnames(heatmap_gene_subset), "_"), `[`, 1)
> table(heatmap_female_stages)
heatmap_female_stages
E10.5 E11.5 E12.5 E13.5 E16.5    P6 
   68   100   103    99    85   108 

1.6 用包装好的pheatmap画热图

# 看到H图中,列被分成了4栏,那么这个就是根据colbreaks来划分的。colbreaks的意思就是从哪里到哪里这是一块。当有多个分组又想画一个分割线的话,这个参数就很有用
colbreaks <- c(
  ncol(cl1_gene_subset),
  ncol(cl1_gene_subset)+ncol(cl2_gene_subset), 
  ncol(cl1_gene_subset)+ncol(cl2_gene_subset)+ncol(cl3_gene_subset)
)

# 然后就是上色,6个时间点和4个群使用自定义的颜色
cluster_color <- c(
  C1="#560047",
  C2="#a53bad", 
  C3="#eb6bac", 
  C4="#ffa8a0"
)

stage_color=c(
  E10.5="#2754b5", 
  E11.5="#8a00b0", 
  E12.5="#d20e0f", 
  E13.5="#f77f05", 
  E16.5="#f9db21",
  P6="#43f14b"
)

# 开始画热图
library(pheatmap)
png("female_marker_heatmap.png")
plot_heatmap_2(
  heatmap_gene_subset, 
  female_clustering, 
  heatmap_female_stages, 
  rowbreaks, 
  colbreaks,
  cluster_color,
  stage_color
)
dev.off()
包装好的pheatmap画热图

1.7 用包装好的ggboxplot画小提琴图

pdf("step2.1-B-markers-violin.pdf", width=10, height=22)
require(gridExtra)

# 每个基因的小提琴图都有4个cluster,对它们用不同的颜色
female_clusterPalette <- c(
  "#560047", 
  "#a53bad", 
  "#eb6bac", 
  "#ffa8a0"
)
# 每个基因做一个小提琴图,并用for循环保存在p这个列表中
p <- list()
for (genes in markerGenes) {
  p[[genes]] <- violin_gene_exp(
    genes, 
    females, 
    female_clustering, 
    female_clusterPalette
  )
}
# 最后组合起来,每列显示3张
do.call(grid.arrange,c(p, ncol=3))
dev.off()
小提琴图
其中这个violin_gene_exp函数是精髓,如果要看它做了什么,可以按住cmd或ctrl,然后点一下这个函数,就会跳到自定义函数脚本中
自定义函数脚本

1.8 用包装好的geom_point+geom_density_2d画等高线图

pdf("step2.1-C-markers-tSNE-density.pdf", width=16, height=28)
require(gridExtra)

load('../step1-female-RPKM-tSNE/female_tsne.Rdata')
p <- list()
for (genes in markerGenes) {
  p[[genes]] <- tsne_gene_exp(
    female_tsne,
    genes, 
    females
  )
}

do.call(grid.arrange,c(p, ncol=4))
dev.off()
等高线图

2 使用Seurat包带的函数进行可视化

上一次已经做好了Seurat的tSNE分群结果,直接加载

load('seurat3-female-tsne.Rdata')
DimPlot(object = sce_female_tsne, reduction = "tsne")
Seurat tSNE分群结果
然后画小提琴图和表达量热图
# 小提琴图
pdf('seurat3_VlnPlot.pdf', width=10, height=15)
VlnPlot(object = sce_female_tsne, features =  markerGenes , 
        pt.size = 0.2,ncol = 4)
dev.off()

# 基因表达量热图
pdf('seurat3_FeaturePlot.pdf', width=10, height=15)
FeaturePlot(object = sce_female_tsne, features = markerGenes ,
            pt.size = 0.2,ncol = 3)
dev.off()
小提琴图和表达量热图

比较作者代码和Seurat的结果

取同一个基因Nr2f2,看看它们的小提琴图:

比较作者代码和Seurat的结果
然后如果我们自己画图呢?
# 就画其中的Nr2f2基因
## 分类信息在此
group <- Seurat::Idents(sce_female)
## 表达矩阵在此
nr2f2 <- as.numeric(log(female_count['Nr2f2',]+1))
boxplot(nr2f2~group)
自己画图
ggboxplot画一个箱线图并加上显著性
df <- data.frame(expr=nr2f2,
                 group=group)
female_clusterPalette <- c(
  "#560047", 
  "#a53bad", 
  "#eb6bac", 
  "#ffa8a0"
)
my_comparisons <- list( c("0", "1"), c("1", "2"), c("2", "3") )
ggboxplot(df, x = "group", y = "expr",
          color = "group", palette = female_clusterPalette)+ 
  stat_compare_means(comparisons = my_comparisons)
ggboxplot
ggviolin再画一个小提琴图
df <- data.frame(expr=nr2f2,
                 group=group)
female_clusterPalette <- c(
  "#560047", 
  "#a53bad", 
  "#eb6bac", 
  "#ffa8a0"
)
ggviolin(df, "group", "expr", fill = "group",
         palette = female_clusterPalette,
         add = "boxplot", add.params = list(fill = "white"))+
  stat_compare_means(comparisons = my_comparisons)
ggviolin
显示全文