首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

行测之数学运算真题与解析

2024-08-17 来源:化拓教育网

1.看到题中给出两个不同事物,求这两个事物相差多少或各有多少,想到鸡兔同笼问题。

例:有大小两个瓶,大瓶可以装水5千克,小瓶可以装水1千克,现在有100千克水共装了52瓶。问大瓶和小瓶相差多少个?

A 26个         B 28个        C 30个         D32个

解析:答案是B。鸡兔同笼问题。假设都是1千克的瓶子,将装水52千克,现在多装了100-52=48千克,大瓶每个比小瓶多装4千克,所以大瓶共有48÷4=12个,小瓶共有52-12=40个,相差28个。

2.出现“倍数”“和”“一半”的字样和具体的数字,想到和差倍问题。

和差倍问题是已知两个数的和(或差)与它们的倍数关系,求大小两个数的值。(和+差)÷2=较大数;(和-差)÷2=较小数;较大数-差=较小数

例:水果店运来的西瓜个数是哈密瓜的4倍,如果每天卖130个西瓜和36个哈密瓜,那么哈密瓜卖完后还剩70个西瓜。该店共运来西瓜和哈密瓜多少个?

A 225     B 720     C 790     D 900

解析:答案是D。如果每天卖36×4=144个时,二者恰好同时卖完,所以共卖了70÷(144-130)=5天,共有5×(144+36)=900个。

3.看到题中出现将n件物品放到m个容器中的字样,想到抽屉原理。

抽屉原理基本思考原则是最差原则。

抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2个。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

例:有红黄绿三种颜色的手套各6双,装在一个黑色的布袋里,从袋子里任意取出手套来,为确保至少有2双手套不同颜色,则至少要取出的手套只数是:

A 15只     B 13只     C 12只     D 10只

解析:答案A。考虑最坏的情况,若已取出了一种颜色的全部6双手套和其他两种颜色的手套各一只,再取出一只时,即得到2双不同颜色的手套。所以至少取出12+2+1=15只。

4.若题中出现“重叠”,“兼”和具体的数字,则想到容斥原理。

例:某专业有学生50人,现开设有甲、乙、丙三门选修课。有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲乙课程的有28人,兼选甲丙课程的有26人,兼选乙丙两门课程的有24人,甲乙丙三门课程均选的有20人,问三门课程未选的有多少人?

A 1人   B 2人   C 3人   D 4人

解析:答案是B。这道题是典型的容斥问题。由容斥的公式可知,选课的人数共有40+36+30-28-26-24+20=48人,所以答案为50-48=2人。
 


更多
  |  
相关文章
相关问题
显示全文