首页 热点资讯 义务教育 高等教育 出国留学 考研考公

谁有高中数学选修1-2的公式,文科的

发布网友 发布时间:2022-04-23 07:40

我来回答

2个回答

热心网友 时间:2022-06-17 20:15

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

热心网友 时间:2022-06-17 20:16

第一部分 简单逻辑用语

1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.

真命题:判断为真的语句.假命题:判断为假的语句.

2、“若,则”形式的命题中的称为命题的条件,称为命题的结论.

3、原命题:“若,则” 逆命题: “若,则”

否命题:“若,则” 逆否命题:“若,则”

4、四种命题的真假性之间的关系:

(1)两个命题互为逆否命题,它们有相同的真假性;

(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.

5、若,则是的充分条件,是的必要条件.

若,则是的充要条件(充分必要条件).

利用集合间的包含关系:例如:若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;

6、逻辑联结词:⑴且(and):命题形式;⑵或(or):命题形式;

⑶非(not):命题形式.






















7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;

全称命题p:;全称命题p的否定p:。

⑵存在量词——“存在一个”、“至少有一个”等,用“”表示;

特称命题p:;特称命题p的否定p:;

第二部分 圆锥曲线

1、平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.

即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.

2、椭圆的几何性质:

焦点的位置
焦点在轴上
焦点在轴上
图形

标准方程

范围


顶点




轴长
短轴的长 长轴的长
焦点


焦距

对称性
关于轴、轴、原点对称
离心率

3、平面内与两个定点,的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.即:。

这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.

4、双曲线的几何性质:

焦点的位置
焦点在轴上
焦点在轴上
图形

标准方程

范围
或,
或,
顶点


轴长
虚轴的长 实轴的长
焦点


焦距

对称性
关于轴、轴对称,关于原点中心对称
离心率

渐近线方程

5、实轴和虚轴等长的双曲线称为等轴双曲线.

6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.

7、抛物线的几何性质:

标准方程

图形

顶点

对称轴


焦点

准线方程

离心率

范围

8、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.

9、焦半径公式:

若点在抛物线上,焦点为,则;

若点在抛物线上,焦点为,则;

第三部分 导数及其应用

1、函数从到的平均变化率:

2、导数定义:在点处的导数记作;.

3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.

4、常见函数的导数公式:

①;②; ③;④;

⑤;⑥; ⑦;⑧

5、导数运算法则:







6、在某个区间内,若,则函数在这个区间内单调递增;

若,则函数在这个区间内单调递减.

7、求函数的极值的方法是:解方程.当时:

如果在附近的左侧,右侧,那么是极大值;

如果在附近的左侧,右侧,那么是极小值.

8、求函数在上的最大值与最小值的步骤是:

求函数在内的极值;

将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.

9、导数在实际问题中的应用:最优化问题。

第四部分 复数

1.概念:

(1)z=a+bi∈Rb=0 (a,b∈R)z= z2≥0;

(2)z=a+bi是虚数b≠0(a,b∈R);

(3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+=0(z≠0)z2<0;

(4)a+bi=c+dia=c且c=d(a,b,c,d∈R);

2.复数的代数形式及其运算:设z1=a+bi, z2=c+di(a,b,c,d∈R),则:

(1)z1±z2= (a+b)±(c+d)i;

(2)z1.z2= (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i;

(3)z1÷z2= (z2≠0) ;

3.几个重要的结论:

(1);⑷

(2)性质:T=4;;

(3)。

4.运算律:(1)

5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷。

6.模的性质:⑴;⑵;⑶;⑷;

第五部分 统计案例

1.线性回归方程

①变量之间的两类关系:函数关系与相关关系;

②制作散点图,判断线性相关关系

③线性回归方程:(最小二乘法)

注意:线性回归直线经过定点。

2.相关系数(判定两个变量线性相关性):

注:⑴>0时,变量正相关; <0时,变量负相关;

⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归分析中回归效果的判定:

⑴总偏差平方和:⑵残差:;⑶残差平方和: ;⑷回归平方和:-;⑸相关指数 。

注:①得知越大,说明残差平方和越小,则模型拟合效果越好;

②越接近于1,,则回归效果越好。

4.性检验(分类变量关系):

随机变量越大,说明两个分类变量,关系越强,反之,越弱。

第六部分 推理与证明

一.推理:

⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。

注:演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结 论---------根据一般原理,对特殊情况得出的判断。

二.证明

⒈直接证明

⑴综合法

一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。

⑵分析法

一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。

2.间接证明------反证法

一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com