首页 热点资讯 义务教育 高等教育 出国留学 考研考公

求二项分布的数学期望与方差的工式及详细证明过程.

发布网友 发布时间:2022-04-23 05:24

我来回答

2个回答

热心网友 时间:2023-08-30 04:28

X~b(n,p),其中n≥1,0<p<1.
P{X=k}=C(n,k)*p^k*(1-p)^(n-k),k=0,1,...,n.
EX=np,DX=np(1-p).
最简单的证明方法是:X可以分解成n个相互的,都服从以p为参数的(0-1)分布的随机变量之和:
X=X1+X2+...+Xn,Xi~b(1,p),i=1,2,...,n.
P{Xi=0}=1-p,P(Xi=1)=p.
EXi=0*(1-p)+1*p=p,
E(Xi^2)=0^2*(1-p)+1^2*p=p,
DXi=E(Xi^2)-(EXi)^2=p-p^2=p(1-p).
EX=EX1+EX2+...+EXn=np,
DX=DX1+DX2+...+DXn=np(1-p).

热心网友 时间:2023-08-30 04:28

EX=np 证明如下
EX=∑kb(k;n,p)=∑k*C(k,n)p^kq^(n-k)
=np∑C(k-1,n-1)p^(k-1)q^(n-1-k+1)
=np∑C(k,n-1)p^kq^(n-1-k)
=np∑b(k;n-1,p)
=np
其中∑的上下标自己可以添加 本人愚笨 打不出
DX=npq 可用公式DX=EX^2-(EX)^2求出
EX^2=∑k^2b(k;n,p)
=∑[k(k-1)+k]b(k;n,p)
=∑k(k-1)b(k;n,p)+∑kb(k;n,p)
=n(n-1)p^2∑b(k;n-2,p)+np
=n(n-1)p^2+np=n^2p^2+npq
=n^2p^2+npq
所以DX=EX^2-(EX)^2=n^2p^2+npq-n^2p^2
=npq

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com