发布网友 发布时间:2022-04-23 05:11
共1个回答
热心网友 时间:2023-10-15 21:40
clc
clear
tic;
% n 是行与列划分的格子数,对整个[0,1]*[0,1]有n^2个划分,can为方程中的参数k
%这里我们用1,2,3按逆时针来表示一个三角形的各个顶点
% s是一个n^2*10的关联矩阵,s(i,1)表示第i个三角形,s(i,2),s(i,3),s(i,4)分别表示第i个三角形的1,2,3所对应的顶点
% s(i,5),s(i,6);s(i,7),s(i,8);s(i,9),s(i,10)分别表示顶点1,2,3所代表的坐标
%生成关联矩阵s
%A是总刚矩阵
%声明符号变量x y
n=20;
can=20;
s=zeros(2*n^2,10);
h=1/n;
st=1/(2*n^2);
A=zeros((n+1)^2,(n+1)^2);
syms x y;
for k=1:1:2*n^2
s(k,1)=k;
q=fix(k/(2*n));
r=mod(k,(2*n));
if (r~=0)
r=r;
else r=2*n;q=q-1;
end
if (r<=n)
s(k,2)=q*(n+1)+r;
s(k,3)=q*(n+1)+r+1;
s(k,4)=(q+1)*(n+1)+r+1;
s(k,5)=(r-1)*h;
s(k,6)=q*h;
s(k,7)=r*h;
%%
%
% for x = 1:10
% disp(x)
% end
%
s(k,8)=q*h;
s(k,9)=r*h;
s(k,10)=(q+1)*h;
else
s(k,2)=q*(n+1)+r-n;
s(k,3)=(q+1)*(n+1)+r-n+1;
s(k,4)=(q+1)*(n+1)+r-n;
s(k,5)=(r-n-1)*h;
s(k,6)=q*h;
s(k,7)=(r-n)*h;
s(k,8)=(q+1)*h;
s(k,9)=(r-n-1)*h;
s(k,10)=(q+1)*h;
end
end
%下面生成基函数L(i)表示第i个点顶点的基函数
%生成单刚矩阵d
%生成单刚矩阵并将其加入总纲矩阵
d=zeros(3,3);
B=zeros((n+1)^2,1);
b=zeros(3,1);
%生成A的总刚
for k=1:1:2*n^2
L(1)=(1/(2*st))*((s(k,7)*s(k,10)-s(k,9)*s(k,8))+(s(k,8)-s(k,10))*x+(s(k,9)-s(k,7))*y);
L(2)=(1/(2*st))*((s(k,9)*s(k,6)-s(k,5)*s(k,10))+(s(k,10)-s(k,6))*x+(s(k,5)-s(k,9))*y);
L(3)=(1/(2*st))*((s(k,5)*s(k,8)-s(k,7)*s(k,6))+(s(k,6)-s(k,8))*x+(s(k,7)-s(k,5))*y);
for i=1:1:3
for j=i:3
d(i,j)=int(int(((((diff(L(i),x))*(diff(L(j),x)))+((diff(L(i),y))*(diff(L(j),y))))-((can^2)*L(i)*L(j))),x,0,1),y,0,1);
d(j,i)=d(i,j);
end
end
for i=1:1:3
for j=1:1:3
A(s(k,(i+1)),s(k,(j+1)))=A(s(k,(i+1)),s(k,(j+1)))+d(i,j);
end
end
for i=1:1:3
b(i)=int(int((L(i)),x,0,1),y,0,1);
B(s(k,(i+1)),1)=B(s(k,(i+1)),1)+b(i);
end
end
%下面根据边界条件来求解有限元方程组Mx=B,齐次边界条件约掉了很多项
M=zeros((n+1)^2,n^2);
j=n^2;
for i=(n^2+n):-1:1
if ((mod(i,(n+1)))~=1)
M(:,j)=A(:,i);
j=j-1;
else continue
end
end
%preanswer是未知点的值是(n+1)^2*(n^2)的
preanswer=M\B;
%得到所有节点的值
answer=zeros((n+1)^2,1);
j=1;
for i=1:1:(n^2+n)
if ((mod(i,(n+1)))~=1)
answer(i)=preanswer(j);
j=j+1;
else answer(i)=0;
end
end
%%
%
% for x = 1:10
%
% for x = 1:10
%
% for x = 1:10
% disp(x)
% end
%
% disp(x)
% end
%
% disp(x)
% end
%
%生成求解后的图
Z=zeros((n+1),(n+1));
for i=1:1:(n+1)^2
s=fix(i/(n+1))+1;
r=mod(i,(n+1));
if(r==0)
r=n+1;
s=s-1;
else
end
Z(r,s)=answer(i);
end
[X,Y]=meshgrid(1:-h:0,0:h:1);
surf(X,Y,Z);
toc;
t=toc;