首页 热点资讯 义务教育 高等教育 出国留学 考研考公

数据分析工程师都做什么工作?

发布网友 发布时间:2022-04-23 05:38

我来回答

6个回答

热心网友 时间:2022-04-15 10:53

1、任何技术类的岗位做得经验丰富,都不会太差,至少都是月薪过万+;
2、大数据分析工程师,你得了解python,至少会写点脚本;其次也可以了解一些分析工具 如excel、tableau可视化分析工具、数据库(mysql)、如果需要更深入也可以了解一下大数据开发工具 hadoop、spark、hive、R、scala、java、云计算、机器学习、算法等

热心网友 时间:2022-04-15 12:11

就是用各类语言,比如R、Python做数据分析。现在这个岗位还是很火的,很多领域都在设立相关的岗位,而且不是计算机专业的也可以从事。所以我周围还有挺多人,先去学习,然后转到这个岗位上的。

热心网友 时间:2022-04-15 13:45

付费内容限时免费查看回答小新在回答欢迎您的咨询,期待为您服务,你的咨询我已看到,正在寻找相关信息,请稍等几分钟哦[开心]

1、数据分析师

偏向商业化的数据分析,运营广告等活动效果分析,销售额或利润预测,用户特征描述等,需要较好的统计知识,需要懂1-2门数据分析工具如SAS、R等。

2、咨询顾问

面向客户,为客户提供数据抓取、数据分析、出数据报表、改进建议落实等咨询服务,需要有较好的沟通能力,需要懂1-2门数据分析工具如SAS、R等;(咨询顾问其实也分技术和非技术,技术类的主要是为客户搭建数据平台)。

3、数据产品经理

一般是互联网公司独有,数据量大的公司会有自己的数据产品,如阿里巴巴的数据魔方等,主要是针对数据产品从产品立项、提开发需求、跟进产品开发、测试一直到产品上线等工作。

提问数据分析师有哪些岗位

热心网友 时间:2022-04-15 15:37

1 写 SQL (很多入职一两年的大数据工程师主要的工作就是写 SQL )

2 为集群搭大数据环境(一般公司招大数据工程师环境都已经搭好了,公司内部会有现成的大数据平台,但我这边会私下搞一套测试环境,毕竟公司内部的大数据系统权限*很多,严重影响开发效率)

3 维护大数据平台(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作)

4 数据迁移(有部分公司需要把数据从传统的数据库 Oracle、MySQL 等数据迁移到大数据集群中,这个是比较繁琐的工作,吃力不讨好)

5 应用迁移(有部分公司需要把应用从传统的数据库 Oracle、MySQL 等数据库的存储过程程序或者SQL脚本迁移到大数据平台上,这个过程也是非常繁琐的工作,无聊,高度重复且麻烦,吃力不讨好)

6 数据采集(采集日志数据、文件数据、接口数据,这个涉及到各种格式的转换,一般用得比较多的是 Flume 和 Logstash)

7 数据处理
7.1 离线数据处理(这个一般就是写写 SQL 然后扔到 Hive 中跑,其实和第一点有点重复了)
7.2 实时数据处理(这个涉及到消息队列,Kafka,Spark,Flink 这些,组件,一般就是 Flume 采集到数据发给 Kafka 然后 Spark 消费 Kafka 的数据进行处理)

8 数据可视化(这个我司是用 Spring Boot 连接后台数据与前端,前端用自己魔改的 echarts)

9 大数据平台开发(偏Java方向的,大概就是把开源的组件整合起来整成一个可用的大数据平台这样,常见的是各种难用的 PaaS 平台)

10 数据中台开发(中台需要支持接入各种数据源,把各种数据源清洗转换为可用的数据,然后再基于原始数据搭建起宽表层,一般为了节省开发成本和服务器资源,都是基于宽表层查询出业务数据)

11 搭建数据仓库(这里的数据仓库的搭建不是指 Hive ,Hive 是搭建数仓的工具,数仓搭建一般会分为三层 ODS、DW、DM 层,其中DW是最重要的,它又可以分为DWD,DWM,DWS,这个层级只是逻辑上的概念,类似于把表名按照层级区分开来的操作,分层的目的是防止开发数据应用的时候直接访问底层数据,可以减少资源,注意,减少资源开销是减少 内存 和 CPU 的开销,分层后磁盘占用会大大增加,磁盘不值钱所以没什么关系,分层可以使数据表的逻辑更加清晰,方便进一步的开发操作,如果分层没有做好会导致逻辑混乱,新来的员工难以接手业务,提高公司的运营成本,还有这个建数仓也分为建离线和实时的)

总之就是离不开写 SQL ...

热心网友 时间:2022-04-15 17:45

写 SQL (很多入职一两年的大数据工程师主要的工作就是写 SQL )

2 为集群搭大数据环境(一般公司招大数据工程师环境都已经搭好了,公司内部会有现成的大数据平台,但我这边会私下搞一套测试环境,毕竟公司内部的大数据系统权限*很多,严重影响开发效率)

3 维护大数据平台(这个应该是每个大数据工程师都做过的工作,或多或少会承担“运维”的工作)

4 数据迁移(有部分公司需要把数据从传统的数据库 Oracle、MySQL 等数据迁移到大数据集群中,这个是比较繁琐的工作,吃力不讨好)

5 应用迁移(有部分公司需要把应用从传统的数据库 Oracle、MySQL 等数据库的存储过程程序或者SQL脚本迁移到大数据平台上,这个过程也是非常繁琐的工作,无聊,高度重复且麻烦,吃力不讨好)

6 数据采集(采集日志数据、文件数据、接口数据,这个涉及到各种格式的转换,一般用得比较多的是 Flume 和 Logstash)

7 数据处理
7.1 离线数据处理(这个一般就是写写 SQL 然后扔到 Hive 中跑,其实和第一点有点重复了)
7.2 实时数据处理(这个涉及到消息队列,Kafka,Spark,Flink 这些,组件,一般就是 Flume 采集到数据发给 Kafka 然后 Spark 消费 Kafka 的数据进行处理)

8 数据可视化(这个我司是用 Spring Boot 连接后台数据与前端,前端用自己魔改的 echarts)

9 大数据平台开发(偏Java方向的,大概就是把开源的组件整合起来整成一个可用的大数据平台这样,常见的是各种难用的 PaaS 平台)

10 数据中台开发(中台需要支持接入各种数据源,把各种数据源清洗转换为可用的数据,然后再基于原始数据搭建起宽表层,一般为了节省开发成本和服务器资源,都是基于宽表层查询出业务数据)

11 搭建数据仓库(这里的数据仓库的搭建不是指 Hive ,Hive 是搭建数仓的工具,数仓搭建一般会分为三层 ODS、DW、DM 层,其中DW是最重要的,它又可以分为DWD,DWM,DWS,这个层级只是逻辑上的概念,类似于把表名按照层级区分开来的操作,分层的目的是防止开发数据应用的时候直接访问底层数据,可以减少资源,注意,减少资源开销是减少 内存 和 CPU 的开销,分层后磁盘占用会大大增加,磁盘不值钱所以没什么关系,分层可以使数据表的逻辑更加清晰,方便进一步的开发操作,如果分层没有做好会导致逻辑混乱,新来的员工难以接手业务,提高公司的运营成本,还有这个建数仓也分为建离线和实时的)

总之就是离不开写 SQL ...

热心网友 时间:2022-04-15 20:09

Python,,java

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com