发布网友 发布时间:2022-04-23 04:50
共1个回答
热心网友 时间:2023-10-15 08:43
定理1
设A,B 是两个事件,且A不是不可能事件,则称为在事件A发生的条件下,事件B发生的条件概率。一般地,,且它满足以下三条件:
(1)非负性;(2)规范性;(3)可列可加性。
定理2
设E 为随机试验,Ω 为样本空间,A,B 为任意两个事件,设P(A)>0,称为在“事件A 发生”的条件下事件B 的条件概率。
上述乘法公式可推广到任意有穷多个事件时的情况。
设,,…为任意n 个事件(n≥2)且,则
定理3(全概率公式1)
设B1,B2,…Bn是一组事件,若(1)BiBj≠j,i≠j,i,j=1,2,…,n;(2)B1∪B2∪…∪Bn=Ω 则称B1,B2,…Bn样本空间Ω的一个部分,或称为样本空间Ω 的一个完备事件组。
定理4(全概率公式2)
设事件组B1,B2是样本空间Ω 的一个划分,且P(Bi)>0(i=1,2,…n),则对任一事件B,有
定理5(贝叶斯公式)
设A1,A2,…An…是一完备事件组,则对任一事件B,P(B)>0,有