首页 热点资讯 义务教育 高等教育 出国留学 考研考公

怎样证明勾股定理?

发布网友 发布时间:2022-04-23 10:24

我来回答

5个回答

热心网友 时间:2023-10-11 10:27

方向是:用三角形ABD和三角形FBC,三角形BCK和三角形ACE全等证明的·(边角边)

设AB=a BC=c AC=b

三角形BFC的面积就为ABFG的面积加上三角形ABC面积减去三角形FGC

即·0.5ab+a^2-0.5a(a+b)=0.5a^2

同理·三角形BCK的面积为

   0.5ab+b^2-0.5b(a+b)=0.5b^2

然后···三角形ADE的面积就是

c^2+0.5ab-0.5a^2-0.5b^2=0.5|DE||AL|=0.5c[c+(0.5ab)/c]化简等式可得a^2+b^2=c^2

热心网友 时间:2023-10-11 10:27

作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。 过点C作AC的延长线交DF于点P.   ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,   ∴ ∠EGF = ∠BED,   ∵ ∠EGF + ∠GEF = 90°,   ∴ ∠BED + ∠GEF = 90°,   ∴ ∠BEG =180°―90°= 90°   又∵ AB = BE = EG = GA = c,   ∴ ABEG是一个边长为c的正方形。   ∴ ∠ABC + ∠CBE = 90°   ∵ RtΔABC ≌ RtΔEBD,   ∴ ∠ABC = ∠EBD.   ∴ ∠EBD + ∠CBE = 90°   即 ∠CBD= 90°   又∵ ∠BDE = 90°,∠BCP = 90°,   BC = BD = a.   ∴ BDPC是一个边长为a的正方形。   同理,HPFG是一个边长为b的正方形.   设多边形GHCBE的面积为S,则   A²+B²=C².

热心网友 时间:2023-10-11 10:28

勾股定理的证明方法
广西桂平市大洋中学 覃祖海
勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它的证明.下面结合几种图形来进行证明。

一、传说中毕达哥拉斯的证法(图1)

左边的正方形是由1个边长为的正方形和1个边长为的正方形以及4个直角边分别为、,斜边为的直角三角形拼成的。右边的正方形是由1个边长为的正方形和4个直角边分别为、,斜边为的直角三角形拼成的。因为这两个正方形的面积相等(边长都是),所以可以列出等式,化简得。

在西方,人们认为是毕达哥拉斯最早发现并证明这一定理的,但遗憾的是,他的证明方法已经失传,这是传说中的证明方法,这种证明方法简单、直观、易懂。

二、赵爽弦图的证法(图2)

第一种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的直

角三角形围在外面形成的。因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。

第二种方法:边长为的正方形可以看作是由4个直角边分别为、,斜边为 的

角三角形拼接形成的(虚线表示),不过中间缺出一个边长为的正方形“小洞”。

因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。

这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。

三、美国第20任总统茄菲尔德的证法(图3)

这个直角梯形是由2个直角边分别为、,斜边为 的直角三角形和1个直角边为

的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式,化简得。

这种证明方法由于用了梯形面积公式和三角形面积公式,从而使证明更加简洁,它在数学史上被传为佳话

热心网友 时间:2023-10-11 10:28

用三角形的3边长做正方形
通过数格子可算出两条直角边的平方=斜边平方

热心网友 时间:2023-10-11 10:29

三角形 两个直角边的平方相加得数在开根号 懂?书上应该有的 多看看习题

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com