发布网友 发布时间:2022-04-23 14:37
共3个回答
热心网友 时间:2023-10-18 21:17
、利用复合函数求导。
[ln(3x)]'=(1/3x)*(3x)'=(1/3x)*3=1/x
另外一种解法是利用对数性质。
ln(3x)=ln3+lnx
[ln(3x)]'=(ln3)'+(lnx)'=0+1/x=1/x。
扩展资料:
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。 [1]
几何意义
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的计算
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
参考资料:百度百科-导数
热心网友 时间:2023-10-18 21:17
解法(一):
y=ln3x=ln3+lnx,y'=(ln3+lnx)'=(lnx)'=1/x
其中ln3是一个常数,其导数为0。
解法(二):
直接计算,y'=(ln3x)'=3/(3x)=1/x
热心网友 时间:2023-10-18 21:18
(ln3+3x)'
热心网友 时间:2023-10-18 21:17
、利用复合函数求导。
[ln(3x)]'=(1/3x)*(3x)'=(1/3x)*3=1/x
另外一种解法是利用对数性质。
ln(3x)=ln3+lnx
[ln(3x)]'=(ln3)'+(lnx)'=0+1/x=1/x。
扩展资料:
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。
导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。 [1]
几何意义
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的计算
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
参考资料:百度百科-导数
热心网友 时间:2023-10-18 21:17
解法(一):
y=ln3x=ln3+lnx,y'=(ln3+lnx)'=(lnx)'=1/x
其中ln3是一个常数,其导数为0。
解法(二):
直接计算,y'=(ln3x)'=3/(3x)=1/x
热心网友 时间:2023-10-18 21:18
(ln3+3x)'