首页 热点资讯 义务教育 高等教育 出国留学 考研考公

如何培养高中生的数学思维

发布网友 发布时间:2022-04-26 16:03

我来回答

3个回答

懂视网 时间:2023-02-19 21:48

高中数学教学中,相同的知识内容可以应用多种数学思想,相同的数学思想方法也可以用于多种知识中。下面是小编整理分享的高中数学思想方法的培养策略,欢迎阅读与借鉴,希望对你们有帮助!

1高中数学思想方法的培养策略

(一)在数学问题的解决过程中充分应用数学思想

数学教学的根本目的是运用数学知识解决相关问题。在数学问题的解决过程中,要充分应用数学思想,加强对数学问题的探索,寻求解决问题的具体办法与途径。教师在教学过程中要结合学生实际,根据教学内容,对学生进行恰当的引导,有意识地将数学思想运用到实际的解题训练过程中,以使学生找到解决问题的思路,提高学生的数学能力。

我们可在课堂教学过程中选取典型习题,有针对性地提高学生的自主探索能力。如在进行数学函数最值定义的学习过程中,教师可以以求函数y=x2应该是x的平方,在区间[1,2]中的最大值与最小值范围为例。学生在解决此类题的过程中,要先画出函数在[1,2]内的图像,教师在学生画图的过程中要求将R上全部图像画出,然后由学生进行讨论,区分曲线在不同区间上最值的不同求法,进而得出区结论。学生在这个过程中充分运用了分析以及数形结合的数学思想。

(二)在数学知识传授过程中充分应用数学思想

教师在教授数学知识的过程中要充分运用数学思想,帮助学生养成良好的学习习惯。高中数学教学内容主要分为两种类型:表层知识与深层知识。表层知识就是数学概念、数学公式、数学法则以及数学定理等基本内容;深层数学知识包括数学思想以及数学方法。学生在数学知识的学习过程中要根据掌握的知识进行深层次的学习与领悟。数学知识是数学思想方法的载体,教师通过数学知识的传授与学习,提高数学思想的应用,学生在学习表层知识的同时,要加强对深层知识的领悟。

如在学习函数的单调性与奇偶性相关知识时,教师可以通过让学生观察相关函数的图象,利用图象来理解函数的单调性与对称性,然后运用代数方式对其进行描述,进而让学生了解函数单调性与奇偶性的相关定义。在这个过程中,教师要层层渗透数学思想,引导学生在函数问题中应用数形结合的数学思想,提高学生对知识的理解能力。同时在教授指对函数性质的过程中,教师要结合指对函数图像进行分析,让学生自己总结得出性质,掌握指对函数与底数的关系,运用分类数学思想,解决实际问题。

(三)在高中数学知识复习过程中充分应用数学思想方法

高中数学教学中,相同的知识内容可以应用多种数学思想,相同的数学思想方法也可以用于多种知识中。因此,在数学知识复习、总结的过程中,教师要充分应用多种数学思想,锻炼学生的数学思维能力,提高学生对数学知识的提炼、概括、总结能力。如在复习数列相关知识的过程中,教师要充分体现函数与方程之间的转化,将等价转化、分类讨论等数学思想应用其中。

2高中提高数学成绩的思想方法

(一)通过数学史嫁接数学思想方法

数学史是进行数学学习和认识的一种工具,如果想要深入掌握数学思想、数学方法和数学概念的发展轨迹,加强对数学的认识并且建立整体的数学意识,那么适当的应用数学史作为指导和补充是必不可少的。数学史的功能和作用之一为数学学习和研究者指引方向,给他们以明鉴和启迪。例如,在进行解析几何或者数学坐标的内容学习时,可以先让学生们了解伟大的数学家笛卡尔:1619年在军营中生活的笛卡尔的思维和精神长时间处于一种非常兴奋的状态,他花费了自己大部分的宝贵时间一直在思考某个数学问题:能不能用代数计算来巧妙代替几何问题中的证明过程?如此就需要找到一种方法能成功连接代数和几何,将几何中的图形代数化,从而运用代数计算的途径去解决几何问题。

某一天,笛卡尔做梦梦见自己用一把金钥匙将欧几里德宫殿的大门打开以后,看见满地的珍珠非常耀眼,他用一根线串起了珠子去发现线断了,所有珠子消失了,就在此时,他看见空旷如洗的宫殿里一只苍蝇快速的飞着,苍蝇飞过在他眼前留下各种各样的曲线和一条条的斜线痕迹。梦中醒来的笛卡尔突然间恍然大悟:苍蝇飞过的痕迹不是正好说明了曲线和直线都可以通过点的不断运动来形成产生吗?通过这样的数学史的介绍,在增加了学生对学习的兴趣的同时,也渗透了数形结合这一思想给学生。

(二)概念学习中渗透数学思想方法

学习数学概念包括概念的形成和概念的同化,一般经过从具体到抽象,再到具体,先给出问题的实际背景和基本事实,引导学生从问题中分析、概括和抽象出相关的数学概念,为了更深地掌握概念的含义和概念的外延,要分别将概念的肯定和否定例证列举出来,此过程是一个由归纳到演绎的推断过程。

在高中数学的相关概念的产生和形成过程中,归纳法的应用很多,例如函数的奇偶性与单调性、对数与指数函数、子集、等差与等比数列、n次方根等各类概念的介绍。另外,利用概念的同化来进行数学知识的学习时,一些数学思想方法的运用也非常广泛,例如用映射的思想来定义函数、用函数的思想来看待数列、根据等差数列的相关定义类推出等比数列的概念定义等等。

(三)解题中运用数学思想方法

在解数学题时,需要引导学生来自觉运用数学思想方法,让学生在反复的训练和不断的完善中建立起自己的数学思想系统。例如化归思想方法的运用:一射手一次射中目标的概率是0.9,假设他每次击中目标都是的,连续射击四次求他至少射中一次的概率。

至少射中一次包括了一次、两次、三次和四次,可以将问题转化为其对立事件,即一次都没有射中,来解答,这样可以很容易求解出问题的答案。数学思想方法在解题中的运用除了上述正与反的转化,还有一般与特殊的转化、数与形的转化、主与次的转化及熟悉与陌生的转化等等。

3高中数学思想方法

1.与数学课程标准相结合,提高数学教师自身的数学思想方法素养

一个合格的中学数学教师要有扎实的基础知识、基本技能和较强的教学能力,同时还应具有丰厚的数学思想方法素养。不少数学家对教师提出过严格要求,如克莱因就创造了“双重遗忘”的术语,剖析中学教师的状况,提出进了大学忘中学数学,回到中学又忘了高等数学。他指出,中学数学教师要居于更高的优越地位去教授数学知识,这其中的寓意就是要求数学教师应具备良好的数学思维品质与素养。

2.与数学知识结合,将数学思想方法有机地渗透到教学计划和内容中

以数学知识为载体,将数学思想方法渗透到教学计划和内容之中,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。这不但要求教师通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化,还要求教师应充分利用数学的现实原型作为反映数学思想方法的基础。

3.与数学问题结合,在问题解决过程中激活数学思想方法

“问题是数学的心脏”,数学问题解决的过程实际上就是在数学思想的指导下,运用合理的数学方法探寻问题答案的过程。教学中,教师常常会碰到这样的情况:学生不仅具备问题解决所需的全部知识,也知道相应的解题方法,但仍然是苦苦思索不得其解,略经指点却又恍然大悟。这说明学生头脑中虽然具有相应的数学知识和经验,但却不知道如何应用。其原因:一是学生头脑中的知识组织混乱,结构性差,运用时不能恰当表征。二是学生头脑中知识即使表征的合理,但应用时却不能激活认知结构中的数学思想和数学方法。

4.与“过程教学”结合,把发现和创造的思维方法教给学生。

数学教学应是数学活动过程的教学,突出过程,就是强调知识体系的形成过程,强调数学思维与方法的形成过程,强调分析与概括的拓展。所以,课堂教学要引导学生深层次地参与教学过程,让学生在观察、实验的活动中,通过比较、分析、归纳、类比、抽象等思维过程,完成知识的猜想和证明,使学生既加深对知识的理解,又学习到创造的策略和方法,从而激起求知欲望和创新的热情。

4高中数学解题思路和方法

在解题的过程中,是一个思维的过程。

一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。

做一道题目时,最重要的就是审题。审题的第一步就是读题。

读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。

在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。

这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。

做题只是学习过程中的一部分,所以不能为了解题而解题。

解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。


热心网友 时间:2023-02-19 18:56

一、 培养兴趣,促进思维
兴趣是最好的老师,也是每个学生自觉求知的内动力。教师要精心设计每节课,要使每节课形象、生动,有意创造动人的情境,设置诱人的悬念,激发学生思维的火花和求知的*,并使同学们认识到数学在四化建设中的重要地位和作用。经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
二、 学会方法,教会思维
要学生善于思维,必须重视基础知识和基本技能的学习,没有扎实的双基,思维能力是得不到提高的。数学概念、定理是推理论证和运算的基础,准确地理解概念、定理是学好数学的前提。在教学过程中要提高学生观察分析、由表及里、由此及彼的认识能力。
三、 培养好的思维品质
在学生初步学会如何思维和掌握一定的思维方法后,应加强思维能力的训练及思维品质的培养。要注意培养思维的条理性与敏捷性。要注意培养思维的严密性和灵活性。
四、 培养思维能力
1、 找准数学思维能力培养的突破口。
数学思维的敏捷性主要反映了正确前提下的速度问题。因此,数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,跳所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。
2、 教会学生思维的方法。
现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,养成良好思维品质是教学改革的一个重要课题。孔子说:“学而不思则罔,思而不学则殆”。在数学学习中药使学生思维活跃,就要教会学生分析问题的基本方法,这样有利于培养学生的正确思维方式。
3、 善于调动学生内在的思维能力。
一要培养兴趣,让学生迸发思维。教师要精心设计,使每节课形象、生动,并有意创造动人情境,设置诱人悬念,激发学生思维的火花和求知的*,还要经常指导学生运用已学的数学知识和方法解释自己所熟悉的实际问题。
二要分散难点,让学生乐于思维。对于较难的问题或教学内容,教师应根据学生的实际情况,适当分界,减缓坡度,分散难点,创造条件让学生乐于思维。
三要鼓励创新,让学生思维。鼓励学生从不同的角度去观察问题,分析问题,养成良好的思维习惯和品质;鼓励学生敢于发表不同的简洁,多赞扬、肯定,促进学生思维的广阔性发展。
当然,良好的思维品质不是一朝一夕就能形成的,但只要根据学生实际情况,通过各种手段,坚持不懈,持之以恒,就必定会有所成效。

热心网友 时间:2023-02-19 20:14

著名教育家赞可夫指出: “在各科教学中要始终注意发展学生的逻辑思维, 培养学生思维的灵活性和创造性。”数学思维的培养是数学教学的灵魂,学生思维的发展是数学教学的核心。可以说,没有数学思维,就没有真正意义上的数学学习。 因此,小学数学新课程标准提出了“数学思考”学段目标,把小学数学教学活动直接指向学生在与数学相关的一般思维水平方面的发展,明确要求教师在指导学生学习数学知识的同时, 要注重启迪和发展学生思维, 使学生数学思维能力得到形成和发展。如何培养小学生的数学思维能力, 可采取以下五种方式:
一、激发求知*, 培养思维的主动性
学生的思维性较差, 他们不善于组织自己的思维活动, 往往是看到什么就想到什么。培养学生逻辑思维能力, 主要是在教学过程中通过教师示范、引导、指导, 潜移默化地使学生获得一些思维的方法。教师在教学过程中可以精心设计问题, 提出一些富有启发性的问题, 激发思维, 最大限度地调动学生积极性、主动性, 使学生始终能带着一种高涨的情绪从事学习和思考, 全身心地投入到学习之中。
例如,教学“圆的认识”第一课时, 教师首先要学生拿出一张圆形纸片, 将圆纸片对折打开, 再对折再打开, 如此多次, 让学生观察在圆纸片上看到了什么?学生精力陡然集中, 都想看看圆纸片上留下了什么。一生发现: 圆纸片上有折痕。另一生又发现: 圆纸片上有无数条折痕。老师要求学生继续仔细观察。其他学生纷纷发言: 圆面上所有折痕相交于一点, 折痕两旁的图形完全重合。这时, 教师让学生打开课本, 看一看交点叫什么? 折痕叫什么? 学生很快找到了答案并熟记。在学习同一圆中直径和半径的关系时, 教师则让学生拿出尺子量一量自己手中的圆纸片和同学手中的圆纸片的直径和半径, 启发学生又发现了什么?学生很快得出结论。要画圆了, 教师还是不讲画法, 让学生先去画, 满足他们操作圆规的好奇心, 让学生自己发现画圆的方法和步骤。整节课, 学生人人有动手操作、用眼观察、动口说理、动脑思维的机会, 自己观察发现问题, 积极探索得出结论, 教学效果好。再如,在教学“角的认识”时, 学生列举了生活中见过的角,当提到墙角时出现了不同的看法, 有的同学认为是角, 有的同学认为不是角, 到底如何认识呢? 我让学生带着这个“谜”学完了“角”的概念后, 再来讨论认识墙角的“角”可以从几个方向来看, 从而使学生的学习情绪在获得新知识中始终处于兴奋状态, 有利于学生思维活动的积极展开与深入探讨。
二、转换角度思考, 培养思维的求异性
学生的思维能力只有在思维的活跃状态中, 才能得到有效的发展。在教学过程中, 教师要根据教材重点和学生实际提出深浅适度、具有思考性的问题,培养他们敢于求“异”, 发展他们的求异思维, 进而养成思考问题、解决问题的习惯。
如,教学“乘法意义”的运用第一课时,出示了一道加法题: 9+9+9+5+9=? 让学生用简便方法计算。一个学生提出了9×4+5的方法,另一个学生则提出了“新方案”, 建议用9×5- 4方法解。这个学生的思维有创见, 这个方案是他自己发现的。在他的思维活动中, 他“看见了”一个实际并不存在的9, 他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证: 9- 4才是原题中的实际存在的5。这种在别人看不到的问题中发现问题和提出问题, 是创造性思维的闪现, 教师应加倍珍惜和爱护。在教学中, 我还经常发现一部分学生只习惯于正向( 顺向) 思维,而不习惯于反向( 逆向) 思维。在应用题教学中, 在引导学生分析题意时, 一方面可以从问题入手, 推导出解题的思路。另一方面也可以从条件入手, 一步一步归纳出解题的方法。更重要的是, 教师要十分注意在题目的设置上进行正逆向的变式训练。如: 进行语言叙述的变式训练, 即让学生改变叙述形式依据一句话变成几句话。教学的实践告诉我们, 从低年级开始就重视正逆向思维的对比训练, 对于打破学生的思维定势有着积极的意义。
三、注重一题多解, 培养思维的广阔性
思维的广阔性是发散思维的又一特征。思维的狭隘性表现为只知其一, 不知其二, 稍有变化, 就不知所云。反复进行一题多解、一题多变的训练, 是帮助学生克服思维狭隘性的有效办法。可以通过讨论,启迪学生的思维, 开拓解题思路, 在此基础上, 让学生多次训练, 既增长了知识, 又培养了思维能力。教师在教学过程中, 不能只重视计算结果, 要针对教学的重点难点, 精心设计有层次、有坡度、要求明确、一题多解的练习题, 让学生通过训练不断探索解题的捷径, 使思维的广阔性得到不断发展。
例如出示题为“用绳子测量井深。把绳三折来量, 井外余绳4米;把绳四折来量, 井外余绳1米。井深和绳长各是多少? ”
学生可以列出多种解法:
1.工程法: 绳长: ( 4- 1) ÷( 1 /3- 1 /4) =36( 米) , 井深: 36÷4- 1=8( 米)
2.算术法: 井深: 4×3- 1×4=8( 米) , 绳长: ( 8+4) ×=36( 米) , 还可以用方程法解答等等。
再如, 题为: “一艘轮船所带的柴油最多可以用6小时。驶出时顺风, 每小时行30千米。驶回时逆风, 每小时行驶的路程是顺风时的4 /5。这艘轮船最多驶出多远就应返回?”教师要求学生用几种方法解答, 并说出解题思路。
①因为这艘轮船往返行驶,驶出路程等于驶回路程。若设驶出最远路程要用x小时,那么驶回时要用( 6- x) 小时。列方程为:30x=( 30×4 /5) ×( 6- x) 解这个方程得x=8 /3, 那么, 驶出最远路程就是: 30×8 /3=80( 千米) 。
②先求出逆风时的速度: 30×4 /5=24( 千米) , 然后设这艘轮船最多驶出x千米就应往回驶了, 根据行驶往返所用的时间关系, 可以列出方程: x/30+x/24=6, 解这个方程得,这艘轮船最多驶出80千米就应往回驶了。
③老师问:还有其它解法吗?这时, 又一个学生举手说: “我想先求出这艘轮船逆风行驶时的速度: 30×4 /5=24 ( 千米) , 然后把这艘轮船最多驶出的路程看作单位‘1’,根据往返所用的时间关系, 可列算式: 6÷( 1 /30+1 /24) , 解这个算式得这艘轮船最多驶出80千米就应往回驶了。”这个同学利用的是类比思维方式, 他是从要解决的问题出发, 联想与它类似的一个熟悉的问题即工程问题。要通过多次的渐进式的拓展训练, 使学生进入广阔思维的佳境。
四、渗透转化思想, 培养思维的联想性
联想思维是一种表现想象力的思维, 是发散思维的显著标志。联想思维的过程是由此及彼, 由表及里。通过广阔思维的训练, 学生的思维可达到一定广度, 而通过联想思维的训练, 学生的思维可达到一定的深度。例如在学习完圆柱体的表面积和体积之后,出示“一个长方体的表面积是66.16平方厘米, 底面积是19平方厘米, 底面周长是17.6厘米。求这个长方体的体积。”求长方体的体积需要用“底面积×高”, 问题是先要求出长方体的高。学生在教师的引导下, 联想圆柱体的表面积与长方体的表面积相同之处, 从而得出“长方体的高=( 用长方体的表面积- 2个底面积) ÷底面周长”顺利完成本题解答。让学生进行多种解题思路的讨论时, 有的解法需要学生用数学转化思想, 才能使解题思路简捷, 既达到一题多解的效果, 又训练了思路转化的思想。“转化思想”作为一种重要的数学思想, 在小学数学中有着广泛的应用。在应用题解题中, 用转化方法, 迁移深化, 有利于学生联想思维的培养。
五、引导知识迁移, 培养思维的综合性
数学知识具有严密的逻辑系统。就学生的学习过程来说, 某些旧知识是新知识的基础, 新知识又是旧知识的引伸和发展, 学生的认识活动也总是以已有的旧知识和经验为前提。因此, 教师在教学每一个新知识点时, 都要尽可能整合有关的旧知识, 利用已有的知识来搭桥铺路, 引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如题为“两艘轮船同时分别从大江的南北两岸相对开出, 在离南岸260米相遇后继续前进, 到达对岸后立即返回, 又在离北岸200米处相遇, 大江宽是多少米? ”从已知条件出发经过认真地思维与综合, 大部分学生可以得出大江宽度实际上就是从南岸开出的轮船行使了3个260米, 比大江宽度多了200米, 列成算式是: 260×3-200=580( 米) 。这完全得益于数学综合思维的培养。

在数学教学中, 教师要特别注意培养学生根据题中具体条件, 自觉、灵活地运用数学方法, 通过变换角度思考问题, 就可以发现新方法, 制定新策略。数学教学的目的, 不仅在于传授知识, 让学生学习、理解、掌握数学知识, 更要注重教给学生学习的方法, 培养学生思维能力和良好的思维品质, 这是全面提高学生素质的需要。让我们给学生一片广阔的天地, 给他们一个自主的空间, 让他们乐学、会学、善学, 让他们的数学思维能力在课堂学习中得到充分发展。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com