首页 热点资讯 义务教育 高等教育 出国留学 考研考公

哪个不是Hadoop 的核心组件 hbase hive zookeeper riak

发布网友 发布时间:2022-04-25 20:58

我来回答

4个回答

懂视网 时间:2022-04-08 22:26

安装

虚拟机(centos7)

Master:192.168.0.228

Slave:192.168.0.207

软件

apache-hive-1.2.1-bin.tar.gz

hadoop-2.6.0-cdh5.4.8.tar.gz

jdk-8u65-linux-x.tar.gz

mysql-connector-java-5.1.31-bin.jar

hbase-0.98.15-hadoop2-bin.tar

zookeeper-3.4.6.tar

1.关闭防火墙

  Systemctl disable firewalld.service

  Systemctl stop   firewalld.service

  Setenforce 0

  Vim /etc/selinux/config  永久关闭

  将SELINUX=enforce改为SELINUX=disable

2.配置主机名

  192.168.0.228: echo “master” > /etc/hostname

  192.168.0.207:  echo “slave” > /etc/hostname

3.主机间解析

  在两台机器/etc/hosts文件下添加ip地址和主机名

   

4.配置SSH互信

  master 

  yum  -y install  sshpass

  ssh-keygen 一路回车

  ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.220

slave

  yum  -y install  sshpass

  ssh-keygen 一路回车

  ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.201

 

如图,OK

5.安装JDK

  两台机器都需要配置

  tar zxvf jdk-8u65-linux-x.tar.gz

  mv jdk1.8.0_65  /usr/jdk

  设置环境变量

  Vim /etc/profile

export JAVA_HOME=/usr/jdk

export JRE_HOME=/usr/jdk/jre

export CLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JRE_HOME/lib

export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin

执行 source  /etc/profile

测试

java -version,如图

 

 

6.安装Hadoop

  tar zxvf hadoop-2.6.0-cdh5.4.8.tar.gz

  mv hadoop-2.6.0-cdh5.4.8  /usr/hadoop

  cd  /usr/hadoop

  mkdir -p dfs/name

  mkdir -p dfs/data

  mkdir -p tmp

 6.1编辑配置文件

     Salves

     yarn-env.sh

     Yarn-site.xml

     mapred-site.xml

     hdfs-env.sh

     core-site.xml

     Hadoop-env.sh

 

cd /usr/hadoop/etc/hadoop

 vim slaves

 192.168.0.220   #添加slaveIP

 

vim hadoop-env.sh / vim yarn-env.sh

export JAVA_HOME=/usr/jdk   #加入java变量

 

Vim core-site.xml

<configuration>

        <property>

                <name>fs.defaultFS</name>

                <value>hdfs://192.168.0.228:9000</value>

        </property>

        <property>

                <name>io.file.buffer.size</name>

                <value>131702</value>

        </property>

        <property>

                <name>hadoop.tmp.dir</name>

                <value>file:/usr/hadoop/tmp</value>

        </property>

        <property>

                <name>hadoop.proxyuser.hadoop.hosts</name>

                <value>*</value>

        </property>

        <property>

                <name>hadoop.proxyuser.hadoop.groups</name>

                <value>*</value>

        </property>

</configuration>

 

 

Vim hdfs-site.xml

<configuration>

        <property>

                <name>dfs.namenode.name.dir</name>

                <value>:/usr/hadoop/dfs/name</value>

        </property>

        <property>

                <name>dfs.datanode.data.dir</name>

                <value>:/usr/hadoop/dfs/data</value>

        </property>

        <property>

                <name>dfs.replication</name>

                <value>2</value>

        </property>

        <property>

                <name>dfs.namenode.secondary.http-address</name>

                <value>192.168.0.228:9001</value>

        </property>

        <property>

                <name>dfs.webhdfs.enabled</name>

                <value>true</value>

        </property>

</configuration>

 

Vim mapred-site.xml

<configuration>

        <property>

                <name>mapreduce.framework.name</name>

                <value>yarn</value>

        </property>

        <property>

                <name>mapreduce.jobhistory.address</name>

                <value>192.168.0.228:10020</value>

        </property>

        <property>

                <name>mapreduce.jobhistory.webapp.address</name>

                <value>192.168.0.228:19888</value>

        </property>

</configuration>

 

 

 

Vim yarn-site.xml

<configuration>

        <property>

                <name>yarn.nodemanager.aux-services</name>

                <value>mapreduce_shuffle</value>

        </property>

        <property>

                <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>

                <value>org.apache.hadoop.mapred.ShuffleHandler</value>

        </property>

        <property>

                <name>yarn.resourcemanager.address</name>

                <value>192.168.0.228:8032</value>

        </property>

        <property>

                <name>yarn.resourcemanager.scheduler.address</name>

                <value>192.168.0.228:8030</value>

        </property>

        <property>

                <name>yarn.resourcemanager.resource-tracker.address</name>

                <value>192.168.0.228:8031</value>

        </property>

        <property>

                <name>yarn.resourcemanager.admin.address</name>

                <value>192.168.0.228:8033</value>

        </property>

        <property>

                <name>yarn.resourcemanager.webapp.address</name>

                <value>192.168.0.228:8088</value>

        </property>

        <property>

                <name>yarn.nodemanager.resource.memory-mb</name>

                <value>768</value>

        </property>

</configuration>

把目录拷贝到slave机器上

scp -r /usr/hadoop root@192.168.0.207:/usr/

 

格式化namenode

./bin/hdfs namenode -format

启动hdfs

./sbin/start-dfs.sh  ./sbin/start-yarn.sh

使用jps测试

 

 

 

 

 

 

访问192.168.0.228:50070

 

192.168.0.228:8088

 

 

 

安装MySQL和Hive

本地模式:这种模式是将元数据保存在本地数据库中(一般是MySQL)。这样可以支持多用户,多会话。

MySQL:

wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm

rpm -ivh mysql-community-release-el7-5.noarch.rpm

yum -y install mysql-community-server

systemctl start mysql  启动

mysqladmin -uroot password ‘password’为root设置密码

mysql -uroot -ppassword

Create database hive;  创建hive库

grant all on hive.* to ‘hive‘@‘localhost‘ identified by ‘hive’; 授权

 

Hive

tar zxf apache-hive-1.2.1-bin.tar.gz

mv apache-hive-1.2.1-bin/ /usr/hadoop/hive

配置变量

vim /etc/profile

export HIVE_HOME=/usr/hadoop/hive

export PATH=$HIVE_HOME/bin:$HIVE_HOME/conf:$PATH

执行 source /etc/profile

 

mv mysql-connector-java-5.1.31-bin.jar /usr/hadoop/hive/lib 

将JDBC驱动包拷贝到hive的lib下

 

 

cd /usr/hadoop/hive/conf

 

Cp hive-default.xml.template hive-site.xml

 

Vim hive-site.xml 更改配置文件

 

 

Cd /usr/hadoop/hive/bin/

 启动Hive

 

 

 

安装zookeeper和Hbase

1.Zookeeper

   Master配置如下:

   tar zxf zookeeper-3.4.6.tar

   mv zookeeper-3.4.6 /usr/hadoop/zookeeper

   更改文件的拥有者

   Chown -R root:root /usr/hadoop/zookeeper

   cd /usr/hadoop/zookeeper

   mkdir data  创建zookeeper数据存储目录

  

   配置变量 vim /etc/profile

   加入export ZOOKEEPER_HOME=/usr/hadoop/zookeeper

        export PATH=$PATH:$ZOOKEEPER_HOME/bin

   执行 source /etc/profile

   配置文件存放在conf/目录下,将zoo_sample.cfd文件名称改为zoo.cfg,  配置如下:

   Cp zoo_sample.cfd zoo.cfg

Vim zoo.cfg

 

 

tickTime=2000

initLimit=10

syncLimit=5

dataDir=/usr/hadoop/zookeeper/data

clientPort=2181

输入master和slave的ip地址或主机名:

server.1=192.168.0.228:2888:3888

server.2=192.168.0.207:2888:3888

 

mkdir data/myid    创建myid文件

Vim myid

填写zoo.cfg中本机ip前面server.后边的数字

1

 

将文件拷贝器slave节点

scp -r /usr/hadoop/zookeeper/ root@192.168.0.207:/root/hadoop/

 

 

Slave配置:

     配置变量 vim /etc/profile

   加入export ZOOKEEPER_HOME=/usr/hadoop/zookeeper

        export PATH=$PATH:$ZOOKEEPER_HOME/bin

   执行 source /etc/profile

 

Cd /usr/hadoop/zookeeper/data

  mkdir data/myid    创建myid文件

  Vim myid

  填写zoo.cfg中本机ip前面server.后边的数字

  2

 

启动:

  [root@master bin]# /usr/hadoop/zookeeper/bin/zkServer.sh start

  输入jps查看,如图

     


  安装Hbase

     1、tar解压hbase安装包 

      2、配置hbase 

      a、/conf/hbase-env.sh 

      export JAVA_HOME= /usr/jdk

      export HBASE_MANAGES_ZK=false (可以启用hbase自带的zookeeper,这样也   不用单独安装zookeeper了,如单独安装了,配为false) 

    b、conf/hbase-site.xml 

   该配置采用了hbase自带的zookeeper 

<configuration> 

<property> 

<name>hbase.rootdir</name> s

<value>hdfs://master:9000/hbase</value> 

</property> 

<property> 

<name>hbase.cluster.distributed</name> 

<value>true</value> 

</property> 

<property> 

<name>hbase.zookeeper.quorum</name> 

<value>slave1,slave2,slave3</value> 

</property> 

<property> 

<name>dfs.replication</name> 

<value>2</value> 

<description> 

</description> 

</property> 

</configuration> 

单独安装的zookeeper采用如下配置 

regionservers<configuration> 

<property> 

<name>hbase.rootdir</name> 

<value>hdfs://master:9000/hbase</value> 

</property> 

<property> 

<name>hbase.cluster.distributed</name> 

<value>true</value> 

</property> 

<property> 

<name>hbase.zookeeper.quorum</name> 

<value>master,slave1,slave2,slave3</value> 

</property> 

<property> 

<name>dfs.replication</name> 

<value>2</value> 

<description> 

</description> 

</property> 

 

<property> 

<name>hbase.zookeeper.property.dataDir</name> 

<value> 

    /home/hadoop/zk</value> 

<description> 

</description> 

</property> 

 

 

   

</configuration>注意hbase.rootdir配置需要与hadoop的配置一致。 

c、conf/regionservers 

slave1 

slave2 

slave3 

到此hbase的配置已完成,用scp命令复制到slave1~salve3中。 

 

启动hbase, 

start-hbase.sh 

用jps观看是否启动正常,或通过浏览器查看,master:60010。


Hadoop+Hive(MySQL)+Hbase+zookeeper

标签:hadoop   mysql   hive   

热心网友 时间:2022-04-08 19:34

riak 华师大的吧- -
下面来简单介绍各个组件的作用:
HDFS(Hadoop distribute file system)——Hadoop生态系统的基础组件Hadoop分布式文件系统。它是其他一些工具的基础HDFS的机制是将大量数据分布到计算机集群上,数据一次写入,但可以多次读取用于分析。HDFS让Hadoop可以最大化利用磁盘。
HBase—— 一个构建在HDFS之上的面向列的NoSql数据库,HBase用于对打量数据进行快速读取/写入。HBase将Zookeeper用于自身的管理,以保证其所有组件都正在运行。HBase使得Hadoop可以最大化利用内存。
MapRece——MapRece是Hadoop的主要执行框架,它是一个用于分布式并行数据处理的编程模型,将作业分为mapping阶段和rece阶段。开发人员谓Hadoop编写MapRece作业,并使用HDFS中存储的数据,而HDFS可以保证快速的数据访问。鉴于MapRece作业的特性,Hadoop以并行的方式将处理过程移向数据。MapRece使得Hadoop可以最大化利用CPU。
Zookeeper——Zookeeper是Hadoop的分布式协调服务。Zookeeper被设计成可以在机器集群上运行,是一个具有高度可用性的服务,用于Hadoop操作的管理,而且很多Hadoop组件都依赖它。

Oozie—— Oozie是一个北极测很难过到Hadoop软件栈中的可扩展的Workflow系统。用于协调多个MapRece作业的执行。它能够处理大量的复杂性,基于外部事件来管理执行。

Pig——Pig是对MapRece编程复杂性的抽象,Pig平台包含用于分析Hadoop数据集的执行环境和脚本语言(Pig Latin)。它的编译器将Pig Latin翻译为MapRece程序序列。
Hive——类似于SQL的高级语言,用于执行对存储在Hadoop中数据的查询,Hive允许不熟悉MapRece的开发人员编写数据查询语句,它会将翻译为Hadoop中的MapRece作业。类似于Pig。Hive是一个抽象层,适合于较熟悉SQL而不是java编程的数据库分析师。
Hadoop生态系统中还包含一些用于与其他企业级应用进行集成的框架,例如上图所示的Sqoop和Flume:
Sqoop是一个连通性工具,用于在关系型数据库和数据仓库Hadoop之间移动数据。Sqoop利用数据库来描述导入/导出数据的模式,并使用MapRece实现并行操作和容错。
Fulme是一个分布式的、具有可靠性和高可用性的服务,用于从单独的机器上将大量数据高效的收集、聚合并移动到HDFS中。它给予一个简单灵活的架构,童工流式数据操所。它借助于简单可扩展的数据模型,允许将来自企业中多台机器上的数据移到Hadoop中。

热心网友 时间:2022-04-08 20:52

riak 不是Hadoop 的核心组件

热心网友 时间:2022-04-08 22:27

riak

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com