发布网友 发布时间:2022-04-26 05:31
共2个回答
热心网友 时间:2022-06-21 05:16
设函数 在某区间内有定义, 及 + Δx在此区间内。如果函数的增量Δy = f( + Δx) – f( )可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点 是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。
通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段
热心网友 时间:2022-06-21 05:16
分享一种解法。∵dx/[x√(x²-1)]=dx/[x²√(1-1/x²)]=-d(1/x)/√(1-1/x²)=-d[arcsin(1/x)],
∴原式=-arcsin(1/x)丨(x=1,2)=π/3。
供参考。