发布网友 发布时间:2022-04-22 00:00
共1个回答
热心网友 时间:2022-04-15 05:23
【导语】数据平台其实在企业发展的进程中都是存在的,在进入到数据爆发式增加的大数据时代,传统的企业级数据库,在数据管理应用上,并不能完全满意各项需求。就企业自身而言,需求更加契合需求的数据平台建设方案,那么大数据工程师进行数据平台建设,有哪些方案呢?下面就来细细了解一下吧。
1、敏捷型数据集市
数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。
2、常规数据仓库
数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。
3、Hadoop分布式系统架构
当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、*、百度、淘宝等国内外大企,最初都是基于Hadoop来展开的。
Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。
4、MPP(大规模并行处理)架构
进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop
MapRece框架以及MPP计算框架,都是基于这一背景产生。
MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
关于大数据工程师进行数据平台建设方案的有关内容,就给大家介绍到这里了,中国社会发展至今,大数据的应用正在逐渐普及,所以未来前景不可估量,希望想从事此行业的人员能够合理选择。