首页 热点资讯 义务教育 高等教育 出国留学 考研考公

大数据分析师进行数据挖掘常用模型有哪些?

发布网友 发布时间:2022-04-22 00:59

我来回答

1个回答

热心网友 时间:2022-04-12 17:59

【导读】机器学习和数据发掘是紧密相关的,要进行数据发掘需求掌握一些机器学习所用的方法和模型常识,通过模型的练习能够得到处理数据的最优模型,那么大数据分析师进行数据挖掘常用模型有哪些?下面就来一起了解一下。

1、半监督学习

半监督学习算法要求输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。

2、无监督学习模型

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构,应用场景包括关联规则的学习以及聚类等。

3、监督学习模型

监督学习模型,就是人们经常说的分类,通过已经有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型,然后再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。

以上就是大数据分析师进行数据挖掘常用模型,希望想要从事数据分析行业的大家,能够赶快学习起来,如果还想了解更多,欢迎继续关注!

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com