首页 热点资讯 义务教育 高等教育 出国留学 考研考公

等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具...

发布网友 发布时间:2024-10-24 11:20

我来回答

1个回答

热心网友 时间:2024-11-09 04:50

D
试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.
【解析】
由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,
可知P点为等边△ABC的垂心;
因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,
每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.
故选D.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com