发布网友 发布时间:2024-12-20 20:25
共4个回答
热心网友 时间:2024-12-20 20:38
由余弦定理得,c²=a²+b²-2abcosC=1+4-1=4,c=2
所以 周长为a+b+c=1+2+2=5
热心网友 时间:2024-12-20 20:39
∵c2=a2+b2-2abcosC=1+4-4× 1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
热心网友 时间:2024-12-20 20:39
∵c²=a²+b²-2abcosC=1+4-4× 1/4=4,
∴c=2,
∴△ABC的周长为a+b+c=1+2+2=5.
热心网友 时间:2024-12-20 20:35
1.余弦定理:cosC=(a²+b²-c²)/2ac =(1+4-c²)/4=1/4
解得:c=±2
∵△ABC的内角A、B、C所对的边分别为a、b、c
∴c=2
C△ABC=a+b+c=5
2.在△ABC中,sinC=√1-(cosC)² =√15/4
cosA=(b²+c²-a²)/2bc =7/8 ,则sinA=√1-(cosA)² =√15/8
cos(A-C)=cosAcosC + sinAsinC =11/16